Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.5 Applications of Multiple Integrals - Exercises - Page 890: 8

Answer

The total mass is $95.66$ g.

Work Step by Step

We have a mass density of $\delta \left( {x,y} \right) = \frac{{{x^2}}}{{{x^2} + {y^2}}}$ and the region as is shown in Figure 10. Let ${\cal D}$ be the shaded region. In this exercise, we choose to evaluate the integral in polar coordinates. Using $x = r\cos \theta $ and $y = r\sin \theta $, we get $\delta \left( {r\cos \theta ,r\sin \theta } \right) = \frac{{{r^2}{{\cos }^2}\theta }}{{{r^2}{{\cos }^2}\theta + {r^2}{{\sin }^2}\theta }} = {\cos ^2}\theta $ From Figure 10 we see that the region is part of a disk of radius $20$ centered at the origin. The vertical line $x=10$ has polar equation $r\cos \theta = 10$. So, $r = 10\sec \theta $ Thus, a ray of angle $\theta $ intersects ${\cal D}$ in the line segment where $r$ ranges from $r = 10\sec \theta $ to $r=20$. So, ${\cal D}$ has polar description: ${\cal D} = \left\{ {\left( {r,\theta } \right)|10\sec \theta \le r \le 20,0 \le \theta \le \frac{\pi }{3}} \right\}$ Using Eq. (1), the total mass is given by ${\rm{total{\ }mass}} = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \delta \left( {x,y} \right){\rm{d}}A = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \delta \left( {r\cos \theta ,r\sin \theta } \right)r{\rm{d}}r{\rm{d}}\theta $ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \frac{{{x^2}}}{{{x^2} + {y^2}}}{\rm{d}}A = \mathop \smallint \limits_{\theta = 0}^{\pi /3} \mathop \smallint \limits_{r = 10\sec \theta }^{20} \left( {{{\cos }^2}\theta } \right)r{\rm{d}}r{\rm{d}}\theta $ $ = \frac{1}{2}\mathop \smallint \limits_{\theta = 0}^{\pi /3} {\cos ^2}\theta \left( {{r^2}|_{10\sec \theta }^{20}} \right){\rm{d}}\theta $ $ = \frac{1}{2}\mathop \smallint \limits_{\theta = 0}^{\pi /3} \left( {400{{\cos }^2}\theta - 100} \right){\rm{d}}\theta $ $ = 200\mathop \smallint \limits_{\theta = 0}^{\pi /3} {\cos ^2}\theta {\rm{d}}\theta - 50\mathop \smallint \limits_{\theta = 0}^{\pi /3} {\rm{d}}\theta $ Using Eq. (4) of the Table of Trigonometric Integrals in Section 8.2: $\smallint {\cos ^2}x{\rm{d}}x = \frac{x}{2} + \frac{{\sin 2x}}{4} + C$ we obtain ${\rm{total{\ }mass}} = 200\left( {\left( {\frac{\theta }{2} + \frac{{\sin 2\theta }}{4}} \right)|_0^{\pi /3}} \right) - \frac{{50}}{3}\pi $ $ = 200\left( {\frac{\pi }{6} + \frac{{\sqrt 3 }}{8}} \right) - \frac{{50}}{3}\pi = \frac{{50}}{3}\pi + 25\sqrt 3 \simeq 95.66$ Thus, the total mass is $95.66$ g.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.