Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.5 Applications of Multiple Integrals - Exercises - Page 890: 1

Answer

The total mass is $\frac{2}{3}$.

Work Step by Step

We have a mass density of $\delta \left( {x,y} \right) = {x^2} + {y^2}$ and the region $0 \le x \le 1$, $0 \le y \le 1$. Using Eq. (1), the total mass is given by ${\rm{total{\ }mass}} = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \delta \left( {x,y} \right){\rm{d}}A = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = 0}^1 \left( {{x^2} + {y^2}} \right){\rm{d}}y{\rm{d}}x$ $ = \mathop \smallint \limits_{x = 0}^1 \left( {\left( {{x^2}y + \frac{1}{3}{y^3}} \right)|_0^1} \right){\rm{d}}x$ $ = \mathop \smallint \limits_{x = 0}^1 \left( {{x^2} + \frac{1}{3}} \right){\rm{d}}x$ $ = \left( {\frac{1}{3}{x^3} + \frac{1}{3}x} \right)|_0^1 = \frac{2}{3}$ The total mass is $\frac{2}{3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.