Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.5 Applications of Multiple Integrals - Exercises - Page 890: 13

Answer

The coordinates of the centroid: $\left( {\bar x,\bar y} \right) = \left( {\frac{{4R}}{{3\pi }},\frac{{4R}}{{3\pi }}} \right)$.

Work Step by Step

We have the region ${\cal D}$, a quarter circle defined by ${x^2} + {y^2} \le {R^2}$, $x \ge 0$, $y \ge 0$. In polar coordinates, the description of ${\cal D}$ is ${\cal D} = \left\{ {\left( {r,\theta } \right)|0 \le r \le R,0 \le \theta \le \frac{\pi }{2}} \right\}$ Since the area of a disk of radius $R$ is $\pi {R^2}$, the area of a quarter circle is $A = \frac{1}{4}\pi {R^2}$. Evaluate the average of $x$-coordinate in polar coordinates: $\bar x = \frac{1}{A}\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} x{\rm{d}}A = \frac{4}{{\pi {R^2}}}\mathop \smallint \limits_{\theta = 0}^{\pi /2} \mathop \smallint \limits_{r = 0}^R {r^2}\cos \theta {\rm{d}}r{\rm{d}}\theta $ $ = \frac{4}{{3\pi {R^2}}}\mathop \smallint \limits_{\theta = 0}^{\pi /2} \left( {{r^3}|_0^R} \right)\cos \theta {\rm{d}}\theta $ $ = \frac{{4R}}{{3\pi }}\mathop \smallint \limits_{\theta = 0}^{\pi /2} \cos \theta {\rm{d}}\theta $ $ = \frac{{4R}}{{3\pi }}\left( {\sin \theta |_0^{\pi /2}} \right) = \frac{{4R}}{{3\pi }}$ Evaluate the average of $y$-coordinate in polar coordinates: $\bar y = \frac{1}{A}\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} y{\rm{d}}A = \frac{4}{{\pi {R^2}}}\mathop \smallint \limits_{\theta = 0}^{\pi /2} \mathop \smallint \limits_{r = 0}^R {r^2}\sin \theta {\rm{d}}r{\rm{d}}\theta $ $ = \frac{4}{{3\pi {R^2}}}\mathop \smallint \limits_{\theta = 0}^{\pi /2} \left( {{r^3}|_0^R} \right)\sin \theta {\rm{d}}\theta $ $ = \frac{{4R}}{{3\pi }}\mathop \smallint \limits_{\theta = 0}^{\pi /2} \sin \theta {\rm{d}}\theta $ $ = - \frac{{4R}}{{3\pi }}\left( {\cos \theta |_0^{\pi /2}} \right) = \frac{{4R}}{{3\pi }}$ So, the coordinates of the centroid: $\left( {\bar x,\bar y} \right) = \left( {\frac{{4R}}{{3\pi }},\frac{{4R}}{{3\pi }}} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.