Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.5 Applications of Multiple Integrals - Exercises - Page 890: 7

Answer

The total charge is $7.5 \times {10^{ - 7}}\pi $ coulombs.

Work Step by Step

We have a charge density $\delta \left( {x,y,z} \right) = \left( {3\cdot{{10}^{ - 8}}} \right){\left( {{x^2} + {y^2} + {z^2}} \right)^{1/2}}$ and the region of a solid ball ${x^2} + {y^2} + {z^2} \le 5$. Using Eq. (1), the total charge is given by ${\rm{total{\ }charge}} = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} \delta \left( {x,y,z} \right){\rm{d}}V$ We choose to evaluate the triple integral using spherical coordinates. First, we define the solid ball ${x^2} + {y^2} + {z^2} \le 5$ in spherical coordinates: ${\cal W} = \left\{ {\left( {\rho ,\phi ,\theta } \right)|0 \le \rho \le \sqrt 5 ,0 \le \phi \le \pi ,0 \le \theta \le 2\pi } \right\}$ In spherical coordinates: $f\left( {\rho \sin \phi \cos \theta ,\rho \sin \phi \sin \theta ,\rho \cos \phi } \right) = \left( {3\cdot{{10}^{ - 8}}} \right)\rho $ Thus, ${\rm{total{\ }charge}} = \left( {3\cdot{{10}^{ - 8}}} \right)\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\phi = 0}^\pi \mathop \smallint \limits_{\rho = 0}^{\sqrt 5 } {\rho ^3}\sin \phi {\rm{d}}\rho {\rm{d}}\phi {\rm{d}}\theta $ $ = \frac{{3\cdot{{10}^{ - 8}}}}{4}\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\phi = 0}^\pi \left( {{\rho ^4}|_0^{\sqrt 5 }} \right)\sin \phi {\rm{d}}\phi {\rm{d}}\theta $ $ = \frac{{75\cdot{{10}^{ - 8}}}}{4}\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\phi = 0}^\pi \sin \phi {\rm{d}}\phi {\rm{d}}\theta $ $ = - \frac{{75\cdot{{10}^{ - 8}}}}{4}\mathop \smallint \limits_{\theta = 0}^{2\pi } \left( {\cos \phi |_0^\pi } \right){\rm{d}}\theta $ $ = - \frac{{75\cdot{{10}^{ - 8}}}}{4}\mathop \smallint \limits_{\theta = 0}^{2\pi } \left( { - 1 - 1} \right){\rm{d}}\theta $ $ = \frac{{75\cdot{{10}^{ - 8}}}}{2}\mathop \smallint \limits_{\theta = 0}^{2\pi } {\rm{d}}\theta = 75\cdot{10^{ - 8}}\pi $ So, the total charge is $7.5 \times {10^{ - 7}}\pi $ coulombs.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.