Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.5 Applications of Multiple Integrals - Exercises - Page 890: 3

Answer

The total charge is $4 \times {10^{ - 6}}$ coulombs.

Work Step by Step

We have a charge density of $\delta \left( {x,y} \right) = {10^{ - 6}}xy$ and the region $0 \le x \le 10$, $0 \le y \le 4{{\rm{e}}^{ - {x^2}/2}}$. Using Eq. (1), the total charge is given by ${\rm{total{\ }charge}} = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \delta \left( {x,y} \right){\rm{d}}A = \mathop \smallint \limits_{x = 0}^{10} \mathop \smallint \limits_{y = 0}^{4{{\rm{e}}^{ - {x^2}/2}}} {10^{ - 6}}xy{\rm{d}}y{\rm{d}}x$ $ = \frac{{{{10}^{ - 6}}}}{2}\mathop \smallint \limits_{x = 0}^{10} x\left( {{y^2}|_0^{4{{\rm{e}}^{ - {x^2}/2}}}} \right){\rm{d}}x$ $ = \frac{{{{10}^{ - 6}}}}{2}\mathop \smallint \limits_{x = 0}^{10} x\left( {16{{\rm{e}}^{ - {x^2}}}} \right){\rm{d}}x$ $ = 8 \times {10^{ - 6}}\mathop \smallint \limits_{x = 0}^{10} x{{\rm{e}}^{ - {x^2}}}{\rm{d}}x$ $ = - 4 \times {10^{ - 6}}\left( {{{\rm{e}}^{ - {x^2}}}|_0^{10}} \right) = - 4 \times {10^{ - 6}}\left( {{{\rm{e}}^{ - 100}} - 1} \right) \simeq 4 \times {10^{ - 6}}$ So, the total charge is $4 \times {10^{ - 6}}$ coulombs.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.