Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.3 Triple Integrals - Exercises - Page 870: 7

Answer

$\dfrac{(a+c)^5b-c^5b-a^5b}{20}$

Work Step by Step

Given: $ f(x, y, z)=(x+z)^3$ The iterated triple integral can be calculated as: $\iiint_{\mathcal{B}} f(x,y,z)d V = \iiint_{\mathcal{B}} (x+z)^3 d V \\ =\int_{0}^{c} \int_{0}^{b} \int_{0}^{a} (x+z)^3 \ dx \ dy \ dz \\ = \int_{0}^{c} \int_{0}^{b} [\dfrac{(x+z)^4}{4}]_0^a \ dy dz \ dx\\=\int_{0}^{c} \int_0^b [\dfrac{(a+z)^4}{4}-\dfrac{z^4}{4}]_0^b \ dz \\=\int_0^c [\dfrac{(a+z)^4b}{4}-\dfrac{z^4b}{4}] \ dz \\=[\dfrac{(a+z)^5b}{20}-\dfrac{z^5b}{20}]_0^c \\=\dfrac{(a+c)^5b-c^5b-a^5b}{20}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.