Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.3 Triple Integrals - Exercises - Page 870: 1

Answer

$$6$$

Work Step by Step

Given $$ f(x, y, z)=z^{4} ; \quad 2 \leq x \leq 8, \quad 0 \leq y \leq 5, \quad 0 \leq z \leq 1$$ Then \begin{aligned} \iiint_{\mathcal{B}}f(x,y,z)dV&= \iiint_{\mathcal{B}} z^{4} d V \\ &=\int_{2}^{8} \int_{0}^{5} \int_{0}^{1} z^{4} d z d y d x\\ &=\int_{2}^{8} \int_{0}^{5}\left(\int_{0}^{1} z^{4} d z\right) d y d x\\ &=\left.\int_{2}^{8} \int_{0}^{5} \frac{1}{5} z^{5}\right|_{z=0} ^{1} d y d x \\ &=\int_{2}^{8} \int_{0}^{5} \frac{1}{5} d y d x\\ &=\frac{1}{5} \int_{2}^{8} \int_{0}^{5} d y d x\\ &=\frac{1}{5} \int_{2}^{8} y\bigg|_{0}^{5} d x\\ &=\int_{2}^{8} dx\\ &=x\bigg|_{2}^{8} \\ &= 6 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.