Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.3 Triple Integrals - Exercises - Page 870: 3

Answer

$$(e-1)\left(1-e^{-2}\right)$$

Work Step by Step

Given $$ f(x, y, z)=x e^{y-2 z} ; 0 \leq x \leq 2, \quad 0 \leq y \leq 1, \quad 0 \leq z \leq 1$$ Since we can write $f(x,y,z) =f_1(x)f_2(y)f_3(z)$, then \begin{aligned} \iiint_{\mathcal{B}} f(x,y,z)d V &= \iiint_{\mathcal{B}} x e^{y-2 z} d V \\ &=\int_{0}^{2} \int_{0}^{1} \int_{0}^{1} x e^{y-2 z} d z d y d x\\ &= \int_{0}^{2} \int_{0}^{1} \int_{0}^{1} x e^{y}e^{-2 z} d z d y d x\\ &=\left(\int_{0}^{2} x d x\right)\left(\int_{0}^{1} e^{y} d y\right)\left(\int_{0}^{1} e^{-2 z} d z\right) \\ &= \left(\frac{1}{2}x^2\bigg|_{0}^{2} \right) \left(e^{y}\bigg|_{0}^{1}\right) \left(\frac{-1}{2}e^{-2 z} \bigg|_{0}^{2}\right) \\ &= (e-1)\left(1-e^{-2}\right) \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.