Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.3 Triple Integrals - Exercises - Page 870: 4

Answer

$4 \ln 3-2 \ln 5$

Work Step by Step

Given: $ f(x, y, z)=\dfrac{x}{(y+z)^2}$ The iterated integral can be calculated as: \begin{aligned} \iiint_{\mathcal{B}} f(x,y,z)d V &= \iiint_{\mathcal{B}} \dfrac{x}{(y+z)^2} d V \\ &=\int_{2}^{4} \int_{-1}^{1} \int_{0}^{2} \dfrac{x}{(y+z)^2}dx d z d y \\ &= \int_{2}^{4} \int_{-1}^{1} [\dfrac{x^2}{2(y+z)^2}]_0^2 dzdy\\ &=[2 \ln |z-1|-2 \ln |1+z|]_2^4 \\ &=[2 \ln |4-1|-2 \ln |1+4|]-[2 \ln |2-1|-2 \ln |1+2|] \\ &=4 \ln 3-2 \ln 5 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.