Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.3 Triple Integrals - Exercises - Page 870: 2

Answer

$$105$$

Work Step by Step

Given $$f(x, y, z)=x z^{2} ; \quad[-2,3] \times[1,3] \times[1,4]$$ Then \begin{align*} \iiint_{\mathrm{B}} f(x, y, z) d V&=\int_{-2}^{3} \int_{1}^{3} \int_{1}^{4} x z^{2} d z d y d x\\ &=\frac{1}{3} \int_{-2}^{3} \int_{1}^{3} x z^{3} \bigg|_{1}^{4} d y d x\\ &= 21\int_{-2}^{3} \int_{1}^{3} x d y d x\\ &= 21\int_{-2}^{3} x y\bigg|_{1}^{3} d x\\ &= 42\int_{-2}^{3} x d x\\ &=21 x^2\bigg|_{-2}^{3}\\ &= 105 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.