Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - Chapter Review Exercises - Page 835: 29

Answer

$\frac{d}{{dt}}f\left( {{\bf{r}}\left( t \right)} \right){|_{t = 2}} = 3 + 4{{\rm{e}}^4}$

Work Step by Step

We have $f\left( {x,y} \right) = x + {{\rm{e}}^y}$ and ${\bf{r}}\left( t \right) = \left( {3t - 1,{t^2}} \right)$. So, $\nabla f = \left( {1,{{\rm{e}}^y}} \right)$, ${\ \ \ \ }$ $\nabla {f_{{\bf{r}}\left( t \right)}} = \left( {1,{{\rm{e}}^{{t^2}}}} \right)$ ${\bf{r}}'\left( t \right) = \left( {3,2t} \right)$ At $t=2$, we get $\nabla {f_{{\bf{r}}\left( 2 \right)}} = \left( {1,{{\rm{e}}^4}} \right)$ and ${\bf{r}}'\left( 2 \right) = \left( {3,4} \right)$. Using the Chain Rule for Paths (Theorem 2 of Section 15.5): $\frac{d}{{dt}}f\left( {{\bf{r}}\left( t \right)} \right){|_{t = 2}} = \nabla {f_{{\bf{r}}\left( 2 \right)}}\cdot{\bf{r}}'\left( 2 \right) = \left( {1,{{\rm{e}}^4}} \right)\cdot\left( {3,4} \right) = 3 + 4{{\rm{e}}^4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.