Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - Chapter Review Exercises - Page 835: 25

Answer

Using linear approximation: $\sqrt {{{7.1}^2} + {{4.9}^2} + 69.5} \simeq 11.9958$ Using a calculator: $\sqrt {{{7.1}^2} + {{4.9}^2} + 69.5} \simeq 11.9967$.

Work Step by Step

We have $f\left( {x,y,z} \right) = \sqrt {{x^2} + {y^2} + z} $. The partial derivatives are ${f_x} = \frac{x}{{\sqrt {{x^2} + {y^2} + z} }}$, ${\ \ }$ ${f_y} = \frac{y}{{\sqrt {{x^2} + {y^2} + z} }}$, ${\ \ }$ ${f_z} = \frac{1}{{2\sqrt {{x^2} + {y^2} + z} }}$ Let $x=a+h$, $y=b+k$ and $z=c+m$. The linear approximation for three variables is given by (1) ${\ \ \ \ }$ $f\left( {a + h,b + k,c + m} \right) \approx f\left( {a,b,c} \right)$ $ + {f_x}\left( {a,b,c} \right)h + {f_y}\left( {a,b,c} \right)k + {f_z}\left( {a,b,c} \right)m$ Write $\left( {a,b,c} \right) = \left( {7,5,70} \right)$ and $\left( {h,k,m} \right) = \left( {0.1, - 0.1, - 0.5} \right)$. So, $f\left( {7,5,70} \right) = 12$ ${f_x}\left( {7,5,70} \right) = \frac{7}{{12}}$ ${f_y}\left( {7,5,70} \right) = \frac{5}{{12}}$ ${f_z}\left( {7,5,70} \right) = \frac{1}{{24}}$ Using equation (1) we get $f\left( {7.1,4.9,69.5} \right)$ $ = \sqrt {{{7.1}^2} + {{4.9}^2} + 69.5} $ $ \simeq f\left( {7,5,70} \right) + {f_x}\left( {7,5,70} \right)\cdot0.1 + {f_y}\left( {7,5,70} \right)\cdot\left( { - 0.1} \right) + {f_z}\left( {7,5,70} \right)\cdot\left( { - 0.5} \right)$ $ \simeq 12 + \frac{7}{{12}}\cdot0.1 + \frac{5}{{12}}\cdot\left( { - 0.1} \right) + \frac{1}{{24}}\cdot\left( { - 0.5} \right)$ $ \simeq 11.9958$ Using a calculator, we obtain $\sqrt {{{7.1}^2} + {{4.9}^2} + 69.5} \simeq 11.9967$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.