Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - Chapter Review Exercises - Page 835: 24

Answer

The estimations: $f\left( {4.1,4} \right) \simeq 2.9$ $f\left( {3.88,4.03} \right) \simeq 3.09$

Work Step by Step

We have $f\left( {4,4} \right) = 3$ and ${f_x}\left( {4,4} \right) = {f_y}\left( {4,4} \right) = - 1$. Let $x=a+h$ and $y=b+k$. The linear approximation to $f\left( {x,y} \right)$ (Eq.(3) of Section 15.4) is given by (1) ${\ \ \ }$ $f\left( {a + h,b + k} \right) \approx f\left( {a,b} \right) + {f_x}\left( {a,b} \right)h + {f_y}\left( {a,b} \right)k$ Write $\left( {a,b} \right) = \left( {4,4} \right)$ and $\left( {h,k} \right) = \left( {0.1,0} \right)$. Using equation (1), we get $f\left( {4.1,4} \right) \simeq f\left( {4,4} \right) + {f_x}\left( {4,4} \right)\cdot0.1 + {f_y}\left( {4,4} \right)\cdot0$ $f\left( {4.1,4} \right) \simeq 3 + \left( { - 1} \right)\cdot0.1 = 2.9$ Write $\left( {a,b} \right) = \left( {4,4} \right)$ and $\left( {h,k} \right) = \left( { - 0.12,0.03} \right)$. Using equation (1), we get $f\left( {3.88,4.03} \right) \simeq f\left( {4,4} \right) + {f_x}\left( {4,4} \right)\cdot\left( { - 0.12} \right) + {f_y}\left( {4,4} \right)\cdot0.03$ $f\left( {3.88,4.03} \right) \simeq 3 + \left( { - 1} \right)\cdot\left( { - 0.12} \right) + \left( { - 1} \right)\cdot0.03 = 3.09$ So, the estimations are $f\left( {4.1,4} \right) \simeq 2.9$ and $f\left( {3.88,4.03} \right) \simeq 3.09$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.