Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - Chapter Review Exercises - Page 835: 22

Answer

By differentiation we show that $u\left( {t,x} \right) = \sin \left( {\alpha ct + \beta } \right)\sin \left( {\alpha x} \right)$ satisfies the wave equation: $\frac{{{\partial ^2}u}}{{\partial {t^2}}} = {c^2}\frac{{{\partial ^2}u}}{{\partial {x^2}}}$

Work Step by Step

We have $u\left( {t,x} \right) = \sin \left( {\alpha ct + \beta } \right)\sin \left( {\alpha x} \right)$. Step 1. Differentiation with respect to $t$ $\frac{{\partial u}}{{\partial t}} = \alpha c\cos \left( {\alpha ct + \beta } \right)\sin \left( {\alpha x} \right)$ $\frac{{{\partial ^2}u}}{{\partial {t^2}}} = - {\alpha ^2}{c^2}\sin \left( {\alpha ct + \beta } \right)\sin \left( {\alpha x} \right)$ $ = {c^2}\left( { - {\alpha ^2}\sin \left( {\alpha ct + \beta } \right)\sin \left( {\alpha x} \right)} \right)$ Step 2. Differentiation with respect to $x$ $\frac{{\partial u}}{{\partial x}} = \alpha \sin \left( {\alpha ct + \beta } \right)\cos \left( {\alpha x} \right)$ $\frac{{{\partial ^2}u}}{{\partial {x^2}}} = - {\alpha ^2}\sin \left( {\alpha ct + \beta } \right)\sin \left( {\alpha x} \right)$ Since $\frac{{{\partial ^2}u}}{{\partial {t^2}}} = {c^2}\left( { - {\alpha ^2}\sin \left( {\alpha ct + \beta } \right)\sin \left( {\alpha x} \right)} \right)$, we conclude that $u\left( {t,x} \right) = \sin \left( {\alpha ct + \beta } \right)\sin \left( {\alpha x} \right)$ satisfies the wave equation: $\frac{{{\partial ^2}u}}{{\partial {t^2}}} = {c^2}\frac{{{\partial ^2}u}}{{\partial {x^2}}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.