Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.8 Lagrange Multipliers: Optimizing with a Constraint - Exercises - Page 833: 52

Answer

(a) We show that: $\nabla g\left( {x\left( c \right),y\left( c \right)} \right)\cdot\left( {x'\left( c \right),y'\left( c \right)} \right) = 1$ (b) We show that: $\frac{d}{{dc}}f\left( {x\left( c \right),y\left( c \right)} \right) = \lambda $ (c) by interpreting $g\left( {x\left( c \right),y\left( c \right)} \right) = c$ as a "budget" constraint, we conclude that $\lambda$ is the rate of increase in $f$ per unit increase in the "budget level" $c$.

Work Step by Step

(a) We are given the constraint $g\left( {x\left( c \right),y\left( c \right)} \right) = c$. We differentiate the equation $g\left( {x\left( c \right),y\left( c \right)} \right) = c$ with respect to $c$ using the Chain Rule (Theorem 1 of Section 15.6): $\frac{{\partial g}}{{\partial c}} = \frac{{\partial g}}{{\partial x}}\frac{{\partial x}}{{\partial c}} + \frac{{\partial g}}{{\partial y}}\frac{{\partial y}}{{\partial c}} = 1$ Using dot product, we can write: $\frac{{\partial g}}{{\partial x}}\frac{{\partial x}}{{\partial c}} + \frac{{\partial g}}{{\partial y}}\frac{{\partial y}}{{\partial c}} = \left( {\frac{{\partial g}}{{\partial x}},\frac{{\partial g}}{{\partial y}}} \right)\cdot\left( {\frac{{\partial x}}{{\partial c}},\frac{{\partial y}}{{\partial c}}} \right)$ So, $\frac{{\partial g}}{{\partial c}} = \left( {\frac{{\partial g}}{{\partial x}},\frac{{\partial g}}{{\partial y}}} \right)\cdot\left( {\frac{{\partial x}}{{\partial c}},\frac{{\partial y}}{{\partial c}}} \right) = 1$ Since $\nabla g = \left( {\frac{{\partial g}}{{\partial x}},\frac{{\partial g}}{{\partial y}}} \right)$, $x'\left( c \right) = \frac{{\partial x}}{{\partial c}}$ and $y'\left( c \right) = \frac{{\partial y}}{{\partial c}}$, so $\frac{{\partial g}}{{\partial c}} = \left( {\nabla g} \right)\cdot\left( {x',y'} \right) = 1$ Hence, $\nabla g\left( {x\left( c \right),y\left( c \right)} \right)\cdot\left( {x'\left( c \right),y'\left( c \right)} \right) = 1$. (b) At the point $P$, we may write the function $f$ as $f\left( {x\left( c \right),y\left( c \right)} \right)$. We differentiate the function $f\left( {x\left( c \right),y\left( c \right)} \right)$ with respect to $c$ using the Chain Rule: $\frac{{df}}{{dc}} = \frac{{\partial f}}{{\partial x}}\frac{{\partial x}}{{\partial c}} + \frac{{\partial f}}{{\partial y}}\frac{{\partial y}}{{\partial c}}$ Similar to part (a) we get $\frac{{df}}{{dc}} = \left( {\nabla f} \right)\cdot\left( {x',y'} \right)$ Writing in full we have $\frac{d}{{dc}}f\left( {x\left( c \right),y\left( c \right)} \right) = \nabla f\left( {x\left( c \right),y\left( c \right)} \right)\cdot\left( {x'\left( c \right),y'\left( c \right)} \right)$ Using the Lagrange condition $\nabla {f_P} = \lambda \nabla {g_P}$, we get $\frac{d}{{dc}}f\left( {x\left( c \right),y\left( c \right)} \right) = \lambda \nabla g\left( {x\left( c \right),y\left( c \right)} \right)\cdot\left( {x'\left( c \right),y'\left( c \right)} \right)$ But from part (a), we have $\nabla g\left( {x\left( c \right),y\left( c \right)} \right)\cdot\left( {x'\left( c \right),y'\left( c \right)} \right) = 1$. Therefore, $\frac{d}{{dc}}f\left( {x\left( c \right),y\left( c \right)} \right) = \lambda $ c) In part (b) we obtain $\frac{d}{{dc}}f\left( {x\left( c \right),y\left( c \right)} \right) = \lambda $. If we interpret $g\left( {x\left( c \right),y\left( c \right)} \right) = c$ as a "budget" constraint. Then $c$ is a "budget level". Since $f$ is a function of $c$, we conclude that $\lambda$ is the rate of increase in $f$ per unit increase in the "budget level" $c$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.