Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.8 Lagrange Multipliers: Optimizing with a Constraint - Exercises - Page 833: 43

Answer

The point $\left( { - 2\sqrt {\frac{3}{{35}}} , - \sqrt {\frac{3}{{35}}} ,2\sqrt {\frac{{15}}{7}} } \right)$ lies on the intersection of the plane $x + \frac{1}{2}y + \frac{1}{4}z = 0$ and the sphere ${x^2} + {y^2} + {z^2} = 9$ has the largest $z$-coordinate $2\sqrt {\frac{{15}}{7}} $.

Work Step by Step

Since we are finding the largest $z$-coordinate, our task is to maximize the function $f\left( {x,y,z} \right) = z$ subject to the two constraints $g\left( {x,y,z} \right) = x + \frac{1}{2}y + \frac{1}{4}z = 0$ and $h\left( {x,y,z} \right) = {x^2} + {y^2} + {z^2} - 9 = 0$. The Lagrange condition is $\nabla f = \lambda \nabla g + \mu \nabla h$ (1) ${\ \ \ \ }$ $\left( {0,0,1} \right) = \lambda \left( {1,\frac{1}{2},\frac{1}{4}} \right) + \mu \left( {2x,2y,2z} \right)$ From the Lagrange condition we obtain three equations: $0 = \lambda + 2\mu x$, ${\ \ \ }$ $0 = \frac{1}{2}\lambda + 2\mu y$, ${\ \ \ }$ $1 = \frac{1}{4}\lambda + 2\mu z$ From these equations we obtain $\lambda = - 2\mu x = - 4\mu y = 4 - 8\mu z$ (2) ${\ \ \ \ }$ $ - 2\mu x = - 4\mu y$, ${\ \ \ }$ $ - 2\mu x = 4 - 8\mu z$ From equation (1) we notice that $\mu \ne 0$, otherwise it has no solution. Thus, the first equation of (2) gives $y = \frac{1}{2}x$. Substituting $y = \frac{1}{2}x$ in $g$ gives $x + \frac{1}{4}x + \frac{1}{4}z = 0$ $z = - 5x$ Substituting $y = \frac{1}{2}x$ and $z = - 5x$ in $h$ gives ${x^2} + \frac{1}{4}{x^2} + 25{x^2} - 9 = 0$ $\frac{{105{x^2}}}{4} = 9$ So, $x = \pm 2\sqrt {\frac{3}{{35}}} $. Using $y = \frac{1}{2}x$ and $z = - 5x$, we obtain the critical points: $\left( {2\sqrt {\frac{3}{{35}}} ,\sqrt {\frac{3}{{35}}} , - 2\sqrt {\frac{{15}}{7}} } \right)$ and $\left( { - 2\sqrt {\frac{3}{{35}}} , - \sqrt {\frac{3}{{35}}} ,2\sqrt {\frac{{15}}{7}} } \right)$. The extreme values corresponds to the two critical points are $f\left( {2\sqrt {\frac{3}{{35}}} ,\sqrt {\frac{3}{{35}}} , - 2\sqrt {\frac{{15}}{7}} } \right) = - 2\sqrt {\frac{{15}}{7}} $ $f\left( { - 2\sqrt {\frac{3}{{35}}} , - \sqrt {\frac{3}{{35}}} ,2\sqrt {\frac{{15}}{7}} } \right) = 2\sqrt {\frac{{15}}{7}} $ From these results we conclude that the maximum of $f$ subject to the two constraints is $2\sqrt {\frac{{15}}{7}} $. So, the point $\left( { - 2\sqrt {\frac{3}{{35}}} , - \sqrt {\frac{3}{{35}}} ,2\sqrt {\frac{{15}}{7}} } \right)$ lies on the intersection of the plane $x + \frac{1}{2}y + \frac{1}{4}z = 0$ and the sphere ${x^2} + {y^2} + {z^2} = 9$ has the largest $z$-coordinate $2\sqrt {\frac{{15}}{7}} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.