Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.8 Lagrange Multipliers: Optimizing with a Constraint - Exercises - Page 833: 46

Answer

The minimum of $f\left( {x,y,z} \right) = y + 2z$ is $8 - \sqrt {17} $ and the maximum is $8 + \sqrt {17} $ subject to the two constraints $2x+z=4$ and ${x^2} + {y^2} = 1$.

Work Step by Step

Our task is to find the minimum and maximum of $f\left( {x,y,z} \right) = y + 2z$ subject to two constraints, $g\left( {x,y,z} \right) = 2x + z - 4 = 0$ and $h\left( {x,y,z} \right) = {x^2} + {y^2} - 1 = 0$. The Lagrange condition is $\nabla f = \lambda \nabla g + \mu \nabla h$ $\left( {0,1,2} \right) = \lambda \left( {2,0,1} \right) + \mu \left( {2x,2y,0} \right)$ From the Lagrange condition we obtain three equations: (1) ${\ \ \ \ }$ $0 = 2\lambda + 2\mu x$, ${\ \ \ }$ $1 = 2\mu y$, ${\ \ \ }$ $2 = \lambda $ Since $\lambda = 2$, these equations imply that $x \ne 0$, $y \ne 0$, $z \ne 0$ and $\mu \ne 0$. Using $\lambda = 2$, equation (1) becomes $0 = 4 + 2\mu x$, ${\ \ \ }$ $1 = 2\mu y$ $\mu = - \frac{2}{x} = \frac{1}{{2y}}$ So, $y = - \frac{1}{4}x$. Substituting $y = - \frac{1}{4}x$ in the constraint $h$ gives ${x^2} + \frac{1}{{16}}{x^2} - 1 = 0$ $\frac{{17}}{{16}}{x^2} = 1$ So, $x = \pm \frac{4}{{\sqrt {17} }}$. The first constraint $g\left( {x,y,z} \right) = 2x + z - 4 = 0$ gives $z=4-2x$. Using $y = - \frac{1}{4}x$ and $z=4-2x$, we obtain the critical points: $\left( {\frac{4}{{\sqrt {17} }}, - \frac{1}{{\sqrt {17} }},4 - \frac{8}{{\sqrt {17} }}} \right)$ and $\left( { - \frac{4}{{\sqrt {17} }},\frac{1}{{\sqrt {17} }},4 + \frac{8}{{\sqrt {17} }}} \right)$. The extreme values corresponds to the two critical points are listed in the following table $\begin{array}{*{20}{c}} {{\rm{Critical{\ }point}}}&{f\left( {x,y,z} \right)}\\ {\left( {\frac{4}{{\sqrt {17} }}, - \frac{1}{{\sqrt {17} }},4 - \frac{8}{{\sqrt {17} }}} \right)}&{8 - \sqrt {17} \simeq 3.88}\\ {\left( { - \frac{4}{{\sqrt {17} }},\frac{1}{{\sqrt {17} }},4 + \frac{8}{{\sqrt {17} }}} \right)}&{8 + \sqrt {17} \simeq 12.12} \end{array}$ From these results we conclude that the minimum of $f\left( {x,y,z} \right) = y + 2z$ is $8 - \sqrt {17} $ and the maximum is $8 + \sqrt {17} $ subject to the two constraints $2x+z=4$ and ${x^2} + {y^2} = 1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.