Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.8 Lagrange Multipliers: Optimizing with a Constraint - Exercises - Page 833: 44

Answer

The maximum of $f\left( {x,y,z} \right) = x + y + z$ is $\frac{{3 + 6\sqrt 2 }}{{\sqrt 5 }} \simeq 5.14$ subject to the two constraints ${x^2} + {y^2} + {z^2} = 9$ and $\frac{1}{4}{x^2} + \frac{1}{4}{y^2} + 4{z^2} = 9$.

Work Step by Step

Our task is to maximize the function $f\left( {x,y,z} \right) = x + y + z$ subject to the two constraints $g\left( {x,y,z} \right) = {x^2} + {y^2} + {z^2} - 9 = 0$ and $h\left( {x,y,z} \right) = \frac{1}{4}{x^2} + \frac{1}{4}{y^2} + 4{z^2} - 9 = 0$. The Lagrange condition is $\nabla f = \lambda \nabla g + \mu \nabla h$ $\left( {1,1,1} \right) = \lambda \left( {2x,2y,2z} \right) + \mu \left( {\frac{1}{2}x,\frac{1}{2}y,8z} \right)$ From the Lagrange condition we obtain three equations: $1 = 2\lambda x + \frac{1}{2}\mu x$, ${\ \ }$ $1 = 2\lambda y + \frac{1}{2}\mu y$, ${\ \ }$ $1 = 2\lambda z + 8\mu z$ Since the left-hand sides are 1 (nonzero), we have $x \ne 0$, $y \ne 0$ and $z \ne 0$. Write $\lambda = \frac{1}{{2x}}\left( {1 - \frac{1}{2}\mu x} \right) = \frac{1}{{2y}}\left( {1 - \frac{1}{2}\mu y} \right) = \frac{1}{{2z}}\left( {1 - 8\mu z} \right)$ $\frac{1}{{2x}} - \frac{\mu }{4} = \frac{1}{{2y}} - \frac{\mu }{4}$, ${\ \ }$ $\frac{1}{{2x}} - \frac{\mu }{4} = \frac{1}{{2z}} - 4\mu $ $\frac{1}{{2x}} = \frac{1}{{2y}}$ So, $y=x$. Substituting $y=x$ in the constraint $g$ gives $2{x^2} + {z^2} - 9 = 0$ $z = \pm \sqrt {9 - 2{x^2}} $ Substituting $y=x$ and $z = \pm \sqrt {9 - 2{x^2}} $ in $h$ gives $\frac{1}{2}{x^2} + 4\left( {9 - 2{x^2}} \right) - 9 = 0$ $27 - \frac{{15}}{2}{x^2} = 0$ So, $x = \pm 3\sqrt {\frac{2}{5}} $. Using $y=x$ and $z = \pm \sqrt {9 - 2{x^2}} $, we obtain the critical points: $\left( {3\sqrt {\frac{2}{5}} ,3\sqrt {\frac{2}{5}} ,\frac{3}{{\sqrt 5 }}} \right)$, $\left( {3\sqrt {\frac{2}{5}} ,3\sqrt {\frac{2}{5}} , - \frac{3}{{\sqrt 5 }}} \right)$, $\left( { - 3\sqrt {\frac{2}{5}} , - 3\sqrt {\frac{2}{5}} ,\frac{3}{{\sqrt 5 }}} \right)$ and $\left( { - 3\sqrt {\frac{2}{5}} , - 3\sqrt {\frac{2}{5}} , - \frac{3}{{\sqrt 5 }}} \right)$. The extreme values corresponds to the four critical points are listed in the following table $\begin{array}{*{20}{c}} {{\rm{Critical{\ }point}}}&{f\left( {x,y,z} \right)}\\ {\left( {3\sqrt {\frac{2}{5}} ,3\sqrt {\frac{2}{5}} ,\frac{3}{{\sqrt 5 }}} \right)}&{\frac{{3 + 6\sqrt 2 }}{{\sqrt 5 }} \simeq 5.14}\\ {\left( {3\sqrt {\frac{2}{5}} ,3\sqrt {\frac{2}{5}} , - \frac{3}{{\sqrt 5 }}} \right)}&{\frac{{ - 3 + 6\sqrt 2 }}{{\sqrt 5 }} \simeq 2.45}\\ {\left( { - 3\sqrt {\frac{2}{5}} , - 3\sqrt {\frac{2}{5}} ,\frac{3}{{\sqrt 5 }}} \right)}&{\frac{{3 - 6\sqrt 2 }}{{\sqrt 5 }} \simeq - 2.45}\\ {\left( { - 3\sqrt {\frac{2}{5}} , - 3\sqrt {\frac{2}{5}} , - \frac{3}{{\sqrt 5 }}} \right)}&{ - \frac{{3 + 6\sqrt 2 }}{{\sqrt 5 }} \simeq - 5.14} \end{array}$ From these results we conclude that the maximum of $f\left( {x,y,z} \right) = x + y + z$ is $\frac{{3 + 6\sqrt 2 }}{{\sqrt 5 }} \simeq 5.14$ subject to the two constraints ${x^2} + {y^2} + {z^2} = 9$ and $\frac{1}{4}{x^2} + \frac{1}{4}{y^2} + 4{z^2} = 9$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.