Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.8 Lagrange Multipliers: Optimizing with a Constraint - Exercises - Page 833: 40

Answer

The maximum value of $f\left( {x,y,z} \right) = xy + xz + yz - xyz$ subject to the constraint $x+y+z=1$ is $\frac{8}{{27}}$.

Work Step by Step

We have $f\left( {x,y,z} \right) = xy + xz + yz - xyz$ and the constraint $g\left( {x,y,z} \right) = x + y + z - 1 = 0$, for $x \ge 0$, $y \ge 0$, $z \ge 0$. Step 1. Write out the Lagrange equations Using Theorem 1, the Lagrange condition $\nabla f = \lambda \nabla g$ yields $\left( {y + z - yz,x + z - xz,x + y - xy} \right) = \lambda \left( {1,1,1} \right)$ $y + z - yz = \lambda $, ${\ \ }$ $x + z - xz = \lambda $, ${\ \ }$ $x + y - xy = \lambda $ Step 2. Solve for $\lambda$ in terms of $x$ and $y$ Since $x \ge 0$, $y \ge 0$, $z \ge 0$ and $\left( {0,0,0} \right)$ does not satisfy the constraint, we may assume that $x \ne 0$, $y \ne 0$, $z \ne 0$. From Step 1, we obtain $\lambda = y + z - yz = x + z - xz = x + y - xy$ From which we obtain three cases: (1) ${\ \ \ }$ $y + z - yz = x + z - xz$, ${\ \ }$ $x + z - xz = x + y - xy$ (2) ${\ \ \ }$ $y + z - yz = x + z - xz$, ${\ \ }$ $y + z - yz = x + y - xy$ (3) ${\ \ \ }$ $y + z - yz = x + y - xy$, ${\ \ }$ $x + z - xz = x + y - xy$ Step 3. Solve for $x$ and $y$ using the constraint Case 1. Equation (1) From the first equation of (1) we obtain $y - yz = x - xz$ $y - x = \left( {y - x} \right)z$ So, $z=1$. From the second equation of (1) we obtain $z - xz = y - xy$ $z - y = \left( {z - y} \right)x$ So, $x=1$. Substituting $z=1$ and $x=1$ in the constraint $x+y+z-1=0$ gives $y=-1$. So, the critical point is $\left( {1, - 1,1} \right)$. Case 2. Equation (2) From the first equation of (2) we obtain $y - yz = x - xz$ $y - x = \left( {y - x} \right)z$ So, $z=1$. From the second equation of (2) we obtain $z - yz = x - xy$ $z - x = \left( {z - x} \right)y$ So, $y=1$. Substituting $z=1$ and $y=1$ in the constraint $x+y+z-1=0$ gives $x=-1$. So, the critical point is $\left( { - 1,1,1} \right)$. Case 3. Equation (3) From the first equation of (3) we obtain $z - yz = x - xy$ $z - x = \left( {z - x} \right)y$ So, $y=1$. From the second equation of (3) we obtain $z - xz = y - xy$ $z - y = \left( {z - y} \right)x$ So, $x=1$. Substituting $y=1$ and $x=1$ in the constraint $x+y+z-1=0$ gives $z=-1$. So, the critical point is $\left( {1,1, - 1} \right)$. Case 4. From Step 1, we obtain $y + z - yz = \lambda $, ${\ \ }$ $x + z - xz = \lambda $, ${\ \ }$ $x + y - xy = \lambda $ The first and the second equation gives $y + z - yz = x + z - xz$ $y - yz = x - xz$ $\left( {y - x} \right) - \left( {y - x} \right)z = 0$ $\left( {y - x} \right)\left( {1 - z} \right) = 0$ So, $y=x$ or $z=1$. Note that $z=1$ has been accounted for in Case 1 and Case 2 above. The first and the third equation gives $y + z - yz = x + y - xy$ $z - yz = x - xy$ $\left( {z - x} \right) - \left( {z - x} \right)y = 0$ $\left( {z - x} \right)\left( {1 - y} \right) = 0$ So, $z=x$ or $y=1$. Note that $y=1$ has been accounted for in Case 2 and Case 3 above. Since $y=x$ and $z=x$, we conclude that $x=y=z$. Substituting $x=y=z$ in the constraint $x+y+z-1=0$ gives $3x-1=0$ So, $x = \frac{1}{3}$. Using $x=y=z$, we obtain the critical point $\left( {\frac{1}{3},\frac{1}{3},\frac{1}{3}} \right)$. Step 4. Calculate the critical values We evaluate $f$ at the critical points and list them in the following table: $\begin{array}{*{20}{c}} {{\rm{Critical{\ }point}}}&{f\left( {x,y,z} \right)}\\ {\left( {1, - 1,1} \right)}&0\\ {\left( { - 1,1,1} \right)}&0\\ {\left( {1,1, - 1} \right)}&0\\ {\left( {\frac{1}{3},\frac{1}{3},\frac{1}{3}} \right)}&{\frac{8}{{27}}} \end{array}$ From this table, we conclude that the maximum value of $f\left( {x,y,z} \right) = xy + xz + yz - xyz$ subject to the constraint $x+y+z-1=0$ is $\frac{8}{{27}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.