Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.5 The Gradient and Directional Derivatives - Exercises - Page 802: 65

Answer

Proof of the Chain Rule for Gradients: $\nabla \left( {F\left( {f\left( {x,y,z} \right)} \right)} \right) = F'\left( {f\left( {x,y,z} \right)} \right)\nabla f$

Work Step by Step

Let $f\left( {x,y,z} \right)$ and $g\left( {x,y,z} \right)$ be differentiable and $c$ a constant. If $F\left( t \right)$ is a differentiable function of one variable, then according to Theorem 1, the Chain Rule for Gradients is given by $\nabla \left( {F\left( {f\left( {x,y,z} \right)} \right)} \right) = F'\left( {f\left( {x,y,z} \right)} \right)\nabla f$ Proof. Using the definition of gradient we get $\nabla \left( {F\left( {f\left( {x,y,z} \right)} \right)} \right) = \left( {\frac{{dF}}{{df}}\frac{{\partial f}}{{\partial x}},\frac{{dF}}{{df}}\frac{{\partial f}}{{\partial y}},\frac{{dF}}{{df}}\frac{{\partial f}}{{\partial z}}} \right)$ Since $F$ is a function of one variable, we can write $\frac{{dF}}{{df}} = F'\left( {f\left( {x,y,z} \right)} \right)$. Thus, $\nabla \left( {F\left( {f\left( {x,y,z} \right)} \right)} \right) = \left( {F'\left( {f\left( {x,y,z} \right)} \right)\frac{{\partial f}}{{\partial x}},F'\left( {f\left( {x,y,z} \right)} \right)\frac{{\partial f}}{{\partial y}},F'\left( {f\left( {x,y,z} \right)} \right)\frac{{\partial f}}{{\partial z}}} \right)$ $ = F'\left( {f\left( {x,y,z} \right)} \right)\left( {\frac{{\partial f}}{{\partial x}},\frac{{\partial f}}{{\partial y}},\frac{{\partial f}}{{\partial z}}} \right)$ Since $\nabla f = \left( {\frac{{\partial f}}{{\partial x}},\frac{{\partial f}}{{\partial y}},\frac{{\partial f}}{{\partial z}}} \right)$, hence $\nabla \left( {F\left( {f\left( {x,y,z} \right)} \right)} \right) = F'\left( {f\left( {x,y,z} \right)} \right)\nabla f$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.