Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.5 The Gradient and Directional Derivatives - Exercises - Page 802: 36

Answer

The rate of change of the bug's temperature at the angle $\theta = \frac{\pi }{3}$ is $ - 7.33$ degrees Celsius per second.

Work Step by Step

We are given $T\left( {x,y} \right) = 20 + 0.1\left( {{x^2} - xy} \right)$, the radius of the circle $R=200$ cm and the speed of the bug, $v=3$ cm/s. So, the gradient of $T$ is $\nabla T\left( {x,y} \right) = 0.1\left( {2x - y, - x} \right)$ Recall from Example 5 of Section 12.2 on page 609, the angular velocity of the bug is given by $\omega = \frac{v}{R}$. So, $\omega = \frac{3}{{200}} = 0.015$ radian per second. Thus, the path of the bug can be parametrized by ${\bf{r}}\left( t \right) = 200\left( {\cos 0.015t,\sin 0.015t} \right) + {\bf{c}}$ ${\ \ }$ for $0 \le t \le 2\pi $, where ${\bf{c}}$ is a constant determined by the initial condition. At time $t=0$, the bug is located at $\left( {200,0} \right)$, so ${\bf{r}}\left( 0 \right) = 200\left( {1,0} \right) + {\bf{c}} = \left( {200,0} \right)$ Thus, ${\bf{c}} = 0$. Therefore, the path is given by ${\bf{r}}\left( t \right) = \left( {200\cos 0.015t,200\sin 0.015t} \right)$ ${\ \ }$ for $0 \le t \le 2\pi $ The velocity is ${\bf{r}}'\left( t \right) = \left( { - 3\sin 0.015t,3\cos 0.015t} \right)$ At the angle $\theta = \frac{\pi }{3}$, we find the corresponding time $t$: $0.015t = \frac{\pi }{3}$ $t = \frac{{200\pi }}{9}$ So, the velocity at $\theta = \frac{\pi }{3}$ is ${\bf{r}}'\left( {\frac{{200\pi }}{9}} \right) = \left( { - 3\sin \left( {0.015\cdot\frac{{200\pi }}{9}} \right),3\cos \left( {0.015\cdot\frac{{200\pi }}{9}} \right)} \right)$ ${\bf{r}}'\left( {\frac{{200\pi }}{9}} \right) = \left( { - 2.6,1.5} \right)$ The unit velocity vector ${\bf{u}}$ is ${\bf{u}} = \frac{{\left( { - 2.6,1.5} \right)}}{{||\left( { - 2.6,1.5} \right)||}} = \left( { - 0.87,0.5} \right)$ Recall from our previous result: $\nabla T\left( {x,y} \right) = 0.1\left( {2x - y, - x} \right)$ So, $\nabla T\left( {{\bf{r}}\left( t \right)} \right) = 0.1\left( {400\cos \left( {0.015t} \right) - 200\sin \left( {0.015t} \right), - 200\cos \left( {0.015t} \right)} \right)$ At $t = \frac{{200\pi }}{9}$, we get $\nabla T\left( {{\bf{r}}\left( {\frac{{200\pi }}{9}} \right)} \right) = \left( {2.68, - 10} \right)$ Using Theorem 3, the rate of change of temperature at $t = \frac{{200\pi }}{9}$ is ${D_{\bf{u}}}T{|_{t = \frac{{200\pi }}{9}}} = \nabla T\left( {{\bf{r}}\left( {\frac{{200\pi }}{9}} \right)} \right)\cdot{\bf{u}}$ ${D_{\bf{u}}}T{|_{t = \frac{{200\pi }}{9}}} = \left( {2.68, - 10} \right)\cdot\left( { - 0.87,0.5} \right) \simeq - 7.33$ So, the rate of change of the bug's temperature at the angle $\theta = \frac{\pi }{3}$ is $ - 7.33$ degrees Celsius per second.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.