Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.5 The Gradient and Directional Derivatives - Exercises - Page 802: 43

Answer

$$(x, y, z) =\pm\left(\frac{4}{\sqrt{17}}, \frac{9}{\sqrt{17}},-\frac{2}{\sqrt{17}}\right)$$

Work Step by Step

Given $$\frac{x^{2}}{4}+\frac{y^{2}}{9}+z^{2}=1,\ \ \ \ \mathbf{v}=\langle 1,1,-2\rangle$$ Consider $f(x,y,z)= \frac{x^{2}}{4}+\frac{y^{2}}{9}+z^{2}-1$ Since \begin{align*} \nabla f&=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle\\ &=\left\langle \frac{x }{2},\frac{2y}{9},2z \right\rangle \end{align*} Since \begin{align*} \nabla f_{P}&=k \mathbf{v}\\ \left\langle \frac{x }{2},\frac{2y}{9},2z \right\rangle &=k\langle 1,1,-2\rangle \end{align*} Then $$x= 2k,\ \ \ \ \ \ y = \frac{9k}{2},\ \ \ \ \ \ z=-k $$ Hence \begin{align*} \frac{x^{2}}{4}+\frac{y^{2}}{9}+z^{2}&=1\\ \frac{(2 k)^{2}}{4}+\frac{(9 k / 2)^{2}}{9}+(-k)^{2}&=1\\ k^{2}+\frac{9}{4} k^{2}+k^{2}&=1 \end{align*} Then $$k=\pm \frac{2}{\sqrt {17}} $$ Hence $$(x, y, z) =\pm\left(\frac{4}{\sqrt{17}}, \frac{9}{\sqrt{17}},-\frac{2}{\sqrt{17}}\right)$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.