Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.5 The Gradient and Directional Derivatives - Exercises - Page 802: 60

Answer

(a) $\nabla f = \left( {\frac{y}{{{x^2} + {y^2}}}, - \frac{x}{{{x^2} + {y^2}}}} \right)$ (b) ${D_{\bf{u}}}f\left( {1,1} \right) = 0$, ${\ \ \ }$ ${D_{\bf{u}}}f\left( {\sqrt 3 ,1} \right) = \frac{{\sqrt 2 }}{8} - \frac{{\sqrt 6 }}{8}$ (c) Setting ${\tan ^{ - 1}}\frac{x}{y} = c$, where $c$ are constants, we show that the lines $y = mx$ for $m \ne 0$ are level curves for $f$. (d) We verify that $\nabla {f_P}$ is orthogonal to the level curve through $P$ for $P = \left( {x,y} \right) \ne \left( {0,0} \right)$.

Work Step by Step

(a) We have $f\left( {x,y} \right) = {\tan ^{ - 1}}\frac{x}{y}$ and ${\bf{u}} = \left( {\frac{{\sqrt 2 }}{2},\frac{{\sqrt 2 }}{2}} \right)$. Using Theorem 2 of Section 7.8: ${f_x} = \frac{1}{{{{\left( {x/y} \right)}^2} + 1}}\cdot\left( {\frac{1}{y}} \right) = \frac{y}{{{x^2} + {y^2}}}$ ${f_y} = \frac{1}{{{{\left( {x/y} \right)}^2} + 1}}\cdot\left( { - x{y^{ - 2}}} \right) = - \frac{x}{{{x^2} + {y^2}}}$ So, the gradient of $f$: $\nabla f = \left( {{f_x},{f_y}} \right) = \left( {\frac{y}{{{x^2} + {y^2}}}, - \frac{x}{{{x^2} + {y^2}}}} \right)$ (b) Using Eq. (3) of Theorem 3, we calculate: 1. ${D_{\bf{u}}}f\left( {1,1} \right)$ ${D_{\bf{u}}}f\left( {1,1} \right) = \nabla {f_{\left( {1,1} \right)}}\cdot\left( {\frac{{\sqrt 2 }}{2},\frac{{\sqrt 2 }}{2}} \right)$ ${D_{\bf{u}}}f\left( {1,1} \right) = \left( {\frac{1}{2}, - \frac{1}{2}} \right)\cdot\left( {\frac{{\sqrt 2 }}{2},\frac{{\sqrt 2 }}{2}} \right) = 0$ 2. ${D_{\bf{u}}}f\left( {\sqrt 3 ,1} \right)$ ${D_{\bf{u}}}f\left( {\sqrt 3 ,1} \right) = \nabla {f_{\left( {\sqrt 3 ,1} \right)}}\cdot\left( {\frac{{\sqrt 2 }}{2},\frac{{\sqrt 2 }}{2}} \right)$ ${D_{\bf{u}}}f\left( {\sqrt 3 ,1} \right) = \left( {\frac{1}{4}, - \frac{{\sqrt 3 }}{4}} \right)\cdot\left( {\frac{{\sqrt 2 }}{2},\frac{{\sqrt 2 }}{2}} \right) = \frac{{\sqrt 2 }}{8} - \frac{{\sqrt 6 }}{8}$ (c) The level curves for $f$ are obtained by setting ${\tan ^{ - 1}}\frac{x}{y} = c$, where $c$ are constants. So, $\frac{x}{y} = \tan c$, ${\ \ \ }$ $y = \frac{x}{{\tan c}}$ Let $m = \frac{1}{{\tan c}} \ne 0$. Hence, the lines $y = mx$ for $m \ne 0$ are level curves for $f$. (d) From part (a), we obtain the gradient of $f$: $\nabla f = \left( {{f_x},{f_y}} \right) = \left( {\frac{y}{{{x^2} + {y^2}}}, - \frac{x}{{{x^2} + {y^2}}}} \right)$ From part (b), we obtain the level curves for $f$ are lines $y = mx$ for $m \ne 0$. Setting $x \equiv t$, these lines can be parametrized by ${\bf{r}}\left( t \right) = t\left( {1,m} \right)$, ${\ \ \ }$ for $t>0$ and $m \ne 0$ Notice that 1. the level curves do not pass through the origin, that is, the points on the line are $P = \left( {x,y} \right) \ne \left( {0,0} \right)$. 2. the direction vectors of the lines are ${\bf{n}} = \left( {1,m} \right)$. Now, we compute $\nabla f\cdot{\bf{n}}$ $\nabla f\cdot{\bf{n}} = \left( {\frac{y}{{{x^2} + {y^2}}}, - \frac{x}{{{x^2} + {y^2}}}} \right)\cdot\left( {1,m} \right)$ $ = \frac{y}{{{x^2} + {y^2}}} - \frac{{mx}}{{{x^2} + {y^2}}}$ Since $y = mx$, therefore $\nabla f\cdot{\bf{n}} = 0$. Hence, $\nabla {f_P}$ is orthogonal to the level curve through $P$ for $P = \left( {x,y} \right) \ne \left( {0,0} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.