Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.5 The Gradient and Directional Derivatives - Exercises - Page 802: 45

Answer

$$9 x+10 y+5 z =33$$

Work Step by Step

Given $$x z+2 x^{2} y+y^{2} z^{3}=11, \quad P=(2,1,1)$$ Consider $f(x,y,z)=x z+2 x^{2} y+y^{2} z^{3}-11 $, since \begin{align*} \nabla f&=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle\\ &=\left\langle z+4 x y, 2 x^{2}+2 y z^{3}, x+3 y^{2} z^{2}\right\rangle\\ \nabla f_{P}&=\langle 9,10,5\rangle \end{align*} Then the equation of the tangent plane at $P$ is given by \begin{align*} \nabla f_{P} \cdot\langle x-x_1, y-y_1, z-z_1\rangle&= 0\\ \langle 9,10,5\rangle \cdot\langle x-2, y-1, z-1\rangle&=0\\ 9(x-2)+10(y-1)+5(z-1)&=0\\ 9 x+10 y+5 z&=33 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.