Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.1 Functions of Two or More Variables - Exercises - Page 764: 19

Answer

(a) $f\left( {x,y} \right) = |x| + |y|$ ${\ }$ matches Figure (D) (b) $f\left( {x,y} \right) = \cos \left( {x - y} \right)$ ${\ }$ matches Figure (C) (c) $f\left( {x,y} \right) = \frac{{ - 1}}{{1 + 9{x^2} + {y^2}}}$ ${\ }$ matches Figure (E) (d) $f\left( {x,y} \right) = \cos \left( {{y^2}} \right){{\rm{e}}^{ - 0.1\left( {{x^2} + {y^2}} \right)}}$ ${\ }$ matches Figure (B) (e) $f\left( {x,y} \right) = \frac{{ - 1}}{{1 + 9{x^2} + 9{y^2}}}$ ${\ }$ matches Figure (A) (f) $f\left( {x,y} \right) = \cos \left( {{x^2} + {y^2}} \right){{\rm{e}}^{ - 0.1\left( {{x^2} + {y^2}} \right)}}$ ${\ }$ matches Figure (F)

Work Step by Step

(a) We have $f\left( {x,y} \right) = |x| + |y|$. By setting $y=a$ we fix the $y$-coordinate and obtain the vertical trace curve $f\left( {x,a} \right) = z = |x| + |a|$ that lies in the plane parallel to the $xz$-plane. Similarly, by setting $x=a$ we fix the $x$-coordinate and obtain the vertical trace curve $f\left( {a,y} \right) = z = |a| + |y|$ in the plane parallel to the $yz$-plane. So, it matches Figure (D). (b) We have $f\left( {x,y} \right) = \cos \left( {x - y} \right)$. It matches Figure (C). (c) We have $f\left( {x,y} \right) = \frac{{ - 1}}{{1 + 9{x^2} + {y^2}}}$. It matches Figure (E). (d) We have $f\left( {x,y} \right) = \cos \left( {{y^2}} \right){{\rm{e}}^{ - 0.1\left( {{x^2} + {y^2}} \right)}}$. It matches Figure (B). (e) We have $f\left( {x,y} \right) = \frac{{ - 1}}{{1 + 9{x^2} + 9{y^2}}}$. It matches Figure (A). (f) We have $f\left( {x,y} \right) = \cos \left( {{x^2} + {y^2}} \right){{\rm{e}}^{ - 0.1\left( {{x^2} + {y^2}} \right)}}$. It matches Figure (F).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.