Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.6 Planetary Motion According to Kepler and Newton - Exercises - Page 752: 19

Answer

(a) Using the conservation of energy we show that $v_{per}^2 - v_{ap}^2 = 2GM\left( {r_{per}^{ - 1} - r_{ap}^{ - 1}} \right)$ (b) Using the results from Exercise 13, we show that $r_{per}^{ - 1} - r_{ap}^{ - 1} = \frac{{2e}}{{a\left( {1 - {e^2}} \right)}}$ (c) We show that $v_{per}^2 - v_{ap}^2 = 4\frac{e}{{{{\left( {1 + e} \right)}^2}}}v_{per}^2$ Using results from part (a) and part (b) we obtain: ${v_{per}} = \sqrt {\left( {\frac{{GM}}{a}} \right)\frac{{1 + e}}{{1 - e}}} $

Work Step by Step

(a) From Exercise 17, we obtain the total energy of a planet orbiting a sun is given by Eq. (8): $E = \frac{1}{2}m{v^2} - \frac{{GMm}}{{||{\bf{r}}||}}$ Also in Exercise 17, it is shown that the total energy is conserved. Therefore, the total energy at perihelion is equal to the total energy at aphelion: $\frac{1}{2}mv_{per}^2 - \frac{{GMm}}{{||{{\bf{r}}_{per}}||}} = \frac{1}{2}mv_{ap}^2 - \frac{{GMm}}{{||{{\bf{r}}_{ap}}||}}$ Write $||{{\bf{r}}_{per}}|| = {r_{per}}$ and $||{{\bf{r}}_{ap}}|| = {r_{ap}}$. So, $\frac{1}{2}mv_{per}^2 - \frac{1}{2}mv_{ap}^2 = \frac{{GMm}}{{{r_{per}}}} - \frac{{GMm}}{{{r_{ap}}}}$ Multiply both sides by $\frac{2}{m}$ we obtain $v_{per}^2 - v_{ap}^2 = 2GM\left( {r_{per}^{ - 1} - r_{ap}^{ - 1}} \right)$ (b) From Exercise 13, we obtain ${r_{per}} = a\left( {1 - e} \right)$ and ${r_{ap}} = a\left( {1 + e} \right)$. Evaluate $r_{per}^{ - 1} - r_{ap}^{ - 1} = \frac{1}{{a\left( {1 - e} \right)}} - \frac{1}{{a\left( {1 + e} \right)}} = \frac{{a\left( {1 + e} \right) - a\left( {1 - e} \right)}}{{{a^2}\left( {1 - {e^2}} \right)}}$ $r_{per}^{ - 1} - r_{ap}^{ - 1} = \frac{{2ae}}{{{a^2}\left( {1 - {e^2}} \right)}}$ $r_{per}^{ - 1} - r_{ap}^{ - 1} = \frac{{2e}}{{a\left( {1 - {e^2}} \right)}}$ (c) From Exercise 15, we obtain ${v_{per}}\left( {1 - e} \right) = {v_{ap}}\left( {1 + e} \right)$ It follows that ${v_{ap}} = {v_{per}}\frac{{1 - e}}{{1 + e}}$. Evaluate $v_{per}^2 - v_{ap}^2 = v_{per}^2 - v_{per}^2{\left( {\frac{{1 - e}}{{1 + e}}} \right)^2}$ $ = v_{per}^2\left( {1 - \frac{{{{\left( {1 - e} \right)}^2}}}{{{{\left( {1 + e} \right)}^2}}}} \right)$ $ = v_{per}^2\left( {\frac{{1 + 2e + {e^2} - 1 + 2e - {e^2}}}{{{{\left( {1 + e} \right)}^2}}}} \right)$ Hence, $v_{per}^2 - v_{ap}^2 = 4\frac{e}{{{{\left( {1 + e} \right)}^2}}}v_{per}^2$. Recall from previous results: $v_{per}^2 - v_{ap}^2 = 2GM\left( {r_{per}^{ - 1} - r_{ap}^{ - 1}} \right)$ $r_{per}^{ - 1} - r_{ap}^{ - 1} = \frac{{2e}}{{a\left( {1 - {e^2}} \right)}}$ So, $v_{per}^2 - v_{ap}^2 = 2GM\left( {\frac{{2e}}{{a\left( {1 - {e^2}} \right)}}} \right)$ But $v_{per}^2 - v_{ap}^2 = 4\frac{e}{{{{\left( {1 + e} \right)}^2}}}v_{per}^2$. Thus, $4\frac{e}{{{{\left( {1 + e} \right)}^2}}}v_{per}^2 = 4GM\left( {\frac{e}{{a\left( {1 - {e^2}} \right)}}} \right)$ $v_{per}^2 = GM\frac{{{{\left( {1 + e} \right)}^2}}}{{a\left( {1 - {e^2}} \right)}} = \frac{{GM\left( {1 + e} \right)}}{{a\left( {1 - e} \right)}}$ ${v_{per}} = \sqrt {\left( {\frac{{GM}}{a}} \right)\frac{{1 + e}}{{1 - e}}} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.