Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.6 Planetary Motion According to Kepler and Newton - Exercises - Page 752: 17

Answer

(a) We evaluate $\frac{d}{{dt}}\frac{1}{2}m{v^2}$ and $\frac{d}{{dt}}\frac{{GMm}}{{||{\bf{r}}||}}$ directly, and obtain $\frac{d}{{dt}}\frac{1}{2}m{v^2} = {\bf{v}}\cdot\left( {m{\bf{a}}} \right)$ $\frac{d}{{dt}}\frac{{GMm}}{{||{\bf{r}}||}} = {\bf{v}}\cdot\left( { - \frac{{GMm}}{{||{\bf{r}}|{|^3}}}{\bf{r}}} \right)$ (b) Taking the derivative of $E$ and using results in part (a) we obtain $\frac{{dE}}{{dt}} = 0$

Work Step by Step

(a) 1. Evaluate $\frac{d}{{dt}}\frac{1}{2}m{v^2}$ Since ${v^2} = {\bf{v}}\cdot{\bf{v}}$, so $\frac{d}{{dt}}\frac{1}{2}m{v^2} = \frac{1}{2}m\frac{d}{{dt}}{\bf{v}}\cdot{\bf{v}} = \frac{1}{2}m\left( {{\bf{v}}\cdot\frac{{d{\bf{v}}}}{{dt}} + \frac{{d{\bf{v}}}}{{dt}}\cdot{\bf{v}}} \right)$ $\frac{d}{{dt}}\frac{1}{2}m{v^2} = m{\bf{v}}\cdot\frac{{d{\bf{v}}}}{{dt}}$ But ${\bf{a}} = \frac{{d{\bf{v}}}}{{dt}}$, so $\frac{d}{{dt}}\frac{1}{2}m{v^2} = {\bf{v}}\cdot\left( {m{\bf{a}}} \right)$ 2. Evaluate $\frac{d}{{dt}}\frac{{GMm}}{{||{\bf{r}}||}}$ $\frac{d}{{dt}}\frac{{GMm}}{{||{\bf{r}}||}} = GMm\frac{d}{{dt}}{\left( {{\bf{r}}\cdot{\bf{r}}} \right)^{ - 1/2}}$ $ = GMm\left( { - \frac{1}{2}} \right){\left( {{\bf{r}}\cdot{\bf{r}}} \right)^{ - 3/2}}\left( {{\bf{r}}\cdot\frac{{d{\bf{r}}}}{{dt}} + \frac{{d{\bf{r}}}}{{dt}}\cdot{\bf{r}}} \right)$ $ = - \frac{{GMm}}{{||{\bf{r}}|{|^3}}}{\bf{r}}\cdot\frac{{d{\bf{r}}}}{{dt}}$ But ${\bf{v}} = \frac{{d{\bf{r}}}}{{dt}}$, so $\frac{d}{{dt}}\frac{{GMm}}{{||{\bf{r}}||}} = {\bf{v}}\cdot\left( { - \frac{{GMm}}{{||{\bf{r}}|{|^3}}}{\bf{r}}} \right)$ (b) Recall from Eq. (1): ${\bf{a}}\left( t \right) = - \frac{{GM}}{{||{\bf{r}}\left( t \right)|{|^2}}}{{\bf{e}}_r}$ So, we can write $\frac{d}{{dt}}\frac{1}{2}m{v^2} = m{\bf{v}}\cdot\frac{{d{\bf{v}}}}{{dt}} = - m{\bf{v}}\cdot\frac{{GM}}{{||{\bf{r}}\left( t \right)|{|^2}}}{{\bf{e}}_r}$ Since ${{\bf{e}}_r} = \frac{{{\bf{r}}\left( t \right)}}{{||{\bf{r}}\left( t \right)||}}$, so $\frac{d}{{dt}}\frac{1}{2}m{v^2} = {\bf{v}}\cdot\left( { - \frac{{GMm}}{{||{\bf{r}}|{|^3}}}{\bf{r}}} \right)$ We have from Eq. (8): (8) ${\ \ \ \ }$ $E = \frac{1}{2}m{v^2} - \frac{{GMm}}{{||{\bf{r}}||}}$ Taking the derivative of $E$ gives $\frac{{dE}}{{dt}} = \frac{d}{{dt}}\frac{1}{2}m{v^2} - \frac{d}{{dt}}\frac{{GMm}}{{||{\bf{r}}||}}$ Substituting our previous results, we obtain $\frac{{dE}}{{dt}} = {\bf{v}}\cdot\left( { - \frac{{GMm}}{{||{\bf{r}}|{|^3}}}{\bf{r}}} \right) - {\bf{v}}\cdot\left( { - \frac{{GMm}}{{||{\bf{r}}|{|^3}}}{\bf{r}}} \right) = 0$ Hence, energy is conserved, that is, $\frac{{dE}}{{dt}} = 0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.