Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.6 Planetary Motion According to Kepler and Newton - Exercises - Page 752: 12

Answer

The rate at which the earth's radial vector sweeps out area is $\frac{{dA}}{{dt}} \simeq 2.241 \times {10^9}$ $k{m^2}/s$ The magnitude of the vector ${\bf{J}}$ is $J \simeq 4.482 \times {10^9}$ $k{m^2}/s$.

Work Step by Step

Since the earth's orbit is circular of radius $R = 150 \times {10^6}$ km, we can parametrize it by ${\bf{r}}\left( t \right) = 150 \times {10^6}\left( {\cos \omega t,\sin \omega t} \right)$ Using the period of the earth $T=365$ days $ = 31.536 \times {10^6}$ s, we find the angular speed: $\omega = \frac{{2\pi }}{T} = \frac{{2\pi }}{{31.536 \times {{10}^6}}}$ 1/s So, ${\bf{r}}\left( t \right) = 150 \times {10^6}\left( {\cos \frac{{2\pi }}{{31.536 \times {{10}^6}}}t,\sin \frac{{2\pi }}{{31.536 \times {{10}^6}}}t} \right)$. It follows that $r{\left( t \right)^2} = {\bf{r}}\left( t \right)\cdot{\bf{r}}\left( t \right) = {\left( {150 \times {{10}^6}} \right)^2} = 22.5 \times {10^{15}}$ $k{m^2}$ The rate at which the earth's radial vector sweeps out area in units of square kilometers per second is $\frac{{dA}}{{dt}} = \frac{1}{2}r{\left( t \right)^2}\theta '\left( t \right)$ Since $\theta '\left( t \right) = \omega = \frac{{2\pi }}{{31.536 \times {{10}^6}}}$, so $\frac{{dA}}{{dt}} = \frac{1}{2} \times 22.5 \times {10^{15}} \times \frac{{2\pi }}{{31.536 \times {{10}^6}}} \simeq 2.241 \times {10^9}$ $k{m^2}/s$ Since $\frac{{dA}}{{dt}} = \frac{1}{2}J$, so $J \simeq 4.482 \times {10^9}$ $k{m^2}/s$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.