Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.6 Planetary Motion According to Kepler and Newton - Exercises - Page 752: 14

Answer

Using the results from Exercise 13: ${r_{per}} = a\left( {1 - e} \right)$ and ${r_{ap}} = a\left( {1 + e} \right)$, we prove that $e = \frac{{{r_{ap}} - {r_{per}}}}{{{r_{ap}} + {r_{per}}}}$ $p = \frac{{2{r_{ap}}{r_{per}}}}{{{r_{ap}} + {r_{per}}}}$

Work Step by Step

From Exercise 13, we obtain ${r_{per}} = a\left( {1 - e} \right)$ and ${r_{ap}} = a\left( {1 + e} \right)$. It follows that $a = \frac{{{r_{per}}}}{{1 - e}}$. Substituting it in ${r_{ap}}$ gives ${r_{ap}} = \frac{{{r_{per}}\left( {1 + e} \right)}}{{1 - e}}$ ${r_{ap}} - e{r_{ap}} = {r_{per}} + e{r_{per}}$ ${r_{ap}} - {r_{per}} = e\left( {{r_{ap}} + {r_{per}}} \right)$ Hence, $e = \frac{{{r_{ap}} - {r_{per}}}}{{{r_{ap}} + {r_{per}}}}$. From Exercise 13, we obtain $p = a\left( {1 + e} \right)\left( {1 - e} \right)$. Substituting $a = \frac{{{r_{per}}}}{{1 - e}}$ and $e = \frac{{{r_{ap}} - {r_{per}}}}{{{r_{ap}} + {r_{per}}}}$ in $p$ gives $p = \frac{{{r_{per}}}}{{1 - \frac{{{r_{ap}} - {r_{per}}}}{{{r_{ap}} + {r_{per}}}}}}\left( {1 + \frac{{{r_{ap}} - {r_{per}}}}{{{r_{ap}} + {r_{per}}}}} \right)\left( {1 - \frac{{{r_{ap}} - {r_{per}}}}{{{r_{ap}} + {r_{per}}}}} \right)$ $p = {r_{per}}\left( {1 + \frac{{{r_{ap}} - {r_{per}}}}{{{r_{ap}} + {r_{per}}}}} \right)$ $p = {r_{per}}\left( {\frac{{2{r_{ap}}}}{{{r_{ap}} + {r_{per}}}}} \right)$ Hence, $p = \frac{{2{r_{ap}}{r_{per}}}}{{{r_{ap}} + {r_{per}}}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.