Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.4 The Cross Product - Exercises - Page 677: 40

Answer

$area = 4\sqrt 2 $

Work Step by Step

Using Eq. (6), the parallelogram spanned by ${\bf{u}} = \left( {1,1,1} \right)$ and ${\bf{v}} = \left( {0,0,4} \right)$ is $area = ||{\bf{u}} \times {\bf{v}}||$ First, we evaluate the vector product ${\bf{u}} \times {\bf{v}}$: ${\bf{u}} \times {\bf{v}} = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ 1&1&1\\ 0&0&4 \end{array}} \right| = \left| {\begin{array}{*{20}{c}} 1&1\\ 0&4 \end{array}} \right|{\bf{i}} - \left| {\begin{array}{*{20}{c}} 1&1\\ 0&4 \end{array}} \right|{\bf{j}} + \left| {\begin{array}{*{20}{c}} 1&1\\ 0&0 \end{array}} \right|{\bf{k}}$ ${\bf{u}} \times {\bf{v}} = 4{\bf{i}} - 4{\bf{j}}$ So, $area = ||{\bf{u}} \times {\bf{v}}|| = \sqrt {{4^2} + {{\left( { - 4} \right)}^2}} = \sqrt {32} = 4\sqrt 2 $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.