Answer
See the verification below.
Work Step by Step
We need to verify that
$||\textbf{v}\times\textbf{w}||^{2}=||\textbf{v}||^{2}||\textbf{w}||^{2}-(\textbf{v}\cdot\textbf{w})^{2}$
$\textbf{v}\times\textbf{w}=\begin{vmatrix}\textbf{i}&\textbf{j}&\textbf{k}\\3&-2&2\\4&-1&2\end{vmatrix}$
$=\textbf{i}(-2\times2-2\times-1)-\textbf{j}(3\times2-4\times2)+\textbf{k}(-1\times3-4\times-2)$
$=-2\textbf{i}+2\textbf{j}+5\textbf{k}$
$||\textbf{v}\times\textbf{w}||=\sqrt {(-2)^{2}+2^{2}+5^{2}}=\sqrt {33}$
$||\textbf{v}\times\textbf{w}||^{2}=33$
$||\textbf{v}||=\sqrt {3^{2}+(-2)^{2}+2^{2}}=\sqrt {17}$
$||\textbf{w}||=\sqrt {4^{2}+(-1)^{2}+2^{2}}=\sqrt {21}$
$\textbf{v}\cdot\textbf{w}=(3\times4)+(-2\times-1)+(2\times2)=18$
$(\textbf{v}\cdot\textbf{w})^{2}=18^{2}=324$
$||\textbf{v}||^{2}||\textbf{w}||^{2}-(\textbf{v}\cdot\textbf{w})^{2}=17\times21-324=33=||\textbf{v}\times\textbf{w}||^{2}$
Hence, verified.