Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.4 The Cross Product - Exercises - Page 677: 30

Answer

$\frac{-\textbf{i}-4\textbf{j}+7\textbf{k}}{\sqrt {66}}$ and $\frac{\textbf{i}+4\textbf{j}-7\textbf{k}}{\sqrt {66}}$

Work Step by Step

$\textbf{a}\times\textbf{b}$ and $\textbf{b}\times\textbf{a}$ are orthogonal to both $\textbf{a}$ and $\textbf{b}$. The unit vector in the direction of $\textbf{a}\times\textbf{b}$ is obtained by dividing $\textbf{a}\times\textbf{b}$ by its magnitude. The unit vector in the direction of $\textbf{b}\times\textbf{a}$ is obtained by dividing $\textbf{b}\times\textbf{a}$ by its magnitude. Let the two unit vectors orthogonal to both $\textbf{a}$ and $\textbf{b}$ be $\textbf{u}$ and $\textbf{v}$. Then, $\textbf{u}=\frac{\textbf{a}\times\textbf{b}}{||\textbf{a}\times\textbf{b}||}$ $\textbf{v}=\frac{\textbf{b}\times\textbf{a}}{||\textbf{b}\times\textbf{a}||}$ $\textbf{a}\times\textbf{b}=\begin{vmatrix}\textbf{i}&\textbf{j}&\textbf{k}\\3&1&1\\-1&2&1\end{vmatrix}$ $=\textbf{i}(1-2)-\textbf{j}(3+1)+\textbf{k}(6+1)$ $=-\textbf{i}-4\textbf{j}+7\textbf{k}$ $\textbf{b}\times\textbf{a}=\begin{vmatrix}\textbf{i}&\textbf{j}&\textbf{k}\\-1&2&1\\3&1&1\end{vmatrix}=$ $=\textbf{i}(2-1)-\textbf{j}(-1-3)+\textbf{k}(-1-6)$ $=\textbf{i}+4\textbf{j}-7\textbf{k}$ $||\textbf{a}\times\textbf{b}||=||\textbf{b}\times\textbf{a}||=\sqrt {1^{2}+4^{2}+7^{2}}=\sqrt {66}$ Therefore, $\textbf{u}=\frac{-\textbf{i}-4\textbf{j}+7\textbf{k}}{\sqrt {66}}$ and $\textbf{v}=\frac{\textbf{i}+4\textbf{j}-7\textbf{k}}{\sqrt {66}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.