Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.4 The Cross Product - Exercises - Page 677: 37

Answer

$2\sqrt {138}$

Work Step by Step

The area of the parallelogram= $||\textbf{v}\times\textbf{w}||$ We calculate the cross product as follows: $\textbf{v}\times\textbf{w}=\begin{vmatrix}\textbf{i}&\textbf{j}&\textbf{k}\\1&3&1\\-4&2&6\end{vmatrix}$ $=\textbf{i}(6\times3-2\times1)-\textbf{j}(6\times1-(-4\times1))+\textbf{k}(2\times1-(3\times-4))$ $=16\textbf{i}-10\textbf{j}+14\textbf{k}$ $||\textbf{v}\times\textbf{w}||=\sqrt {16^{2}+10^{2}+14^{2}}$ $=2\sqrt {138}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.