Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.6 Exercises - Page 494: 9

Answer

$$\left( {\overline x ,\overline y } \right) = \left( {\frac{{10}}{9}, - \frac{1}{9}} \right)$$

Work Step by Step

\[\begin{gathered} {\text{}} \hfill \\ \boxed{\begin{array}{*{20}{c}} {{m_i}}&5&1&3 \\ {\left( {{x_i},{y_i}} \right)}&{\left( {2,2} \right)}&{\left( { - 3,1} \right)}&{\left( {1, - 4} \right)} \end{array}} \hfill \\ \end{gathered} \] $$\eqalign{ & m{\text{ is the total mass of the system}} \cr & m = {m_1} + {m_2} + {m_3} \cr & m = 5 + 1 + 3 \cr & m = 9 \cr & \cr & {\text{*The moment about the }}y{\text{ - axis is }} \cr & {M_y} = {m_1}{x_1} + {m_2}{x_2} + {m_3}{x_3} \cr & {M_y} = \left( 5 \right)\left( 2 \right) + \left( 1 \right)\left( { - 3} \right) + \left( 3 \right)\left( 1 \right) \cr & {M_y} = 10 \cr & \cr & {\text{*The moment about the }}x{\text{ - axis is }} \cr & {M_x} = {m_1}{y_1} + {m_2}{y_2} + {m_3}{y_3} \cr & {M_x} = \left( 5 \right)\left( 2 \right) + \left( 1 \right)\left( 1 \right) + \left( 3 \right)\left( { - 4} \right) \cr & {M_x} = - 1 \cr & \cr & {\text{The center of mass }}\left( {\overline x ,\overline y } \right)({\text{or center of gravity}}){\text{ is}} \cr & \overline x = \frac{{{M_y}}}{m} = \frac{{10}}{9} \cr & \overline y = \frac{{{M_x}}}{m} = \frac{{ - 1}}{9} \cr & \left( {\overline x ,\overline y } \right) = \left( {\frac{{10}}{9}, - \frac{1}{9}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.