Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.6 Exercises - Page 494: 25

Answer

$$\left( {\overline x ,\overline y } \right) = \left( { - \frac{3}{5},\frac{3}{2}} \right)$$

Work Step by Step

$$\eqalign{ & x = - y,{\text{ }}x = 2y - {y^2} \cr & {\text{Using the graph shown below}} \cr & {\text{Let }}h\left( y \right) = 2y - {y^2}{\text{ and }}g\left( y \right) = - y,{\text{ on the interval }}\left[ {0,3} \right] \cr & \cr & {\text{*The mass of the lamina is }} \cr & m = \rho \int_c^d {\left[ {h\left( y \right) - g\left( y \right)} \right]} dy \cr & m = \rho \int_0^3 {\left[ {\left( {2y - {y^2}} \right) - \left( { - y} \right)} \right]} dy \cr & m = \rho \int_0^3 {\left( {3y - {y^2}} \right)} dy \cr & m = \rho \left[ {\frac{3}{2}{y^2} - \frac{1}{3}{y^3}} \right]_0^3 \cr & m = \rho \left[ {\frac{3}{2}{{\left( 3 \right)}^2} - \frac{1}{3}{{\left( 3 \right)}^3}} \right] - \rho \left[ 0 \right] \cr & m = \frac{9}{2}\rho \cr & \cr & *{\text{The moment about the }}y{\text{ - axis is}} \cr & {M_y} = \rho \int_c^d {\left[ {\frac{{h\left( y \right) + g\left( y \right)}}{2}} \right]} \left[ {h\left( y \right) - g\left( y \right)} \right]dy \cr & {M_y} = \rho \int_0^3 {\left[ {\frac{{\left( {2y - {y^2}} \right) + \left( { - y} \right)}}{2}} \right]} \left[ {\left( {2y - {y^2}} \right) - \left( { - y} \right)} \right]dy \cr & {M_y} = \frac{1}{2}\rho \int_0^3 {\left( {y - {y^2}} \right)} \left( {3y - {y^2}} \right)dy \cr & {M_y} = \frac{1}{2}\rho \int_0^3 {\left( {{y^4} - 4{y^3} + 3{y^2}} \right)} dy \cr & {M_y} = \frac{1}{2}\rho \left[ {\frac{1}{5}{y^5} - {y^4} + {y^3}} \right]_0^3 \cr & {M_y} = \frac{1}{2}\rho \left[ {\frac{1}{5}{{\left( 3 \right)}^5} - {{\left( 3 \right)}^4} + {{\left( 3 \right)}^3}} \right] - \frac{1}{2}\rho \left[ 0 \right] \cr & {M_y} = - \frac{{27}}{{10}}\rho \cr & \cr & *{\text{The moment about the }}x{\text{ - axis is}} \cr & {M_x} = \rho \int_c^d y \left[ {h\left( y \right) - g\left( y \right)} \right]dy \cr & {M_x} = \rho \int_0^3 y \left[ {\left( {2y - {y^2}} \right) - \left( { - y} \right)} \right]dy \cr & {M_x} = \rho \int_0^3 y \left( {3y - {y^2}} \right)dy \cr & {M_x} = \rho \int_0^3 {\left( {3{y^2} - {y^3}} \right)} dy \cr & {M_x} = \rho \left[ {{y^3} - \frac{1}{4}{y^4}} \right]_0^3 \cr & {M_x} = \rho \left[ {{{\left( 3 \right)}^3} - \frac{1}{4}{{\left( 3 \right)}^4}} \right] - \rho \left[ 0 \right] \cr & {M_x} = \frac{{27}}{4}\rho \cr & \cr & *{\text{The center of mass }}\left( {\overline x ,\overline y } \right){\text{ is given by:}} \cr & \overline x = \frac{{{M_y}}}{m} = \frac{{ - \frac{{27}}{{10}}\rho }}{{\frac{9}{2}\rho }} = - \frac{3}{5} \cr & \overline y = \frac{{{M_x}}}{m} = \frac{{\frac{{27}}{4}\rho }}{{\frac{9}{2}\rho }} = \frac{3}{2} \cr & \left( {\overline x ,\overline y } \right) = \left( { - \frac{3}{5},\frac{3}{2}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.