Answer
$$\left( {\overline x ,\overline y } \right) \approx \left( {0{\text{ }},{\text{ }}0.818} \right)$$
Work Step by Step
$$\eqalign{
& y = \frac{8}{{{x^2} + 4}},{\text{ }}y = 0,{\text{ }}x = - 2,{\text{ }}x = 2 \cr
& {\text{Using the graph shown below}} \cr
& {\text{Let }}f\left( x \right) = \frac{8}{{{x^2} + 4}}{\text{ and }}g\left( x \right) = 0,{\text{ on }}\left[ { - 2,2} \right] \cr
& \cr
& {\text{*The mass of the lamina is }} \cr
& m = \rho \int_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx \cr
& m = \rho \int_{ - 2}^2 {\frac{8}{{{x^2} + 4}}} dx \cr
& {\text{Using a graphing utility to approximate the integral}} \cr
& m = \rho \left( {2\pi } \right) \cr
& m = 2\pi \rho \cr
& \cr
& *{\text{The moment about the }}x{\text{ - axis is}} \cr
& {M_x} = \rho \int_a^b {\left[ {\frac{{f\left( x \right) + g\left( x \right)}}{2}} \right]} \left[ {f\left( x \right) - g\left( x \right)} \right]dx \cr
& {M_x} = \rho \int_{ - 2}^2 {\left[ {\frac{4}{{{x^2} + 4}}} \right]} \left[ {\frac{8}{{{x^2} + 4}}} \right]dx \cr
& {M_x} = 32\rho \int_{ - 2}^2 {\frac{1}{{{{\left( {{x^2} + 4} \right)}^2}}}} dx \cr
& {\text{Using a graphing utility to approximate the integral}} \cr
& {M_x} \approx 32\rho \left( {0.1606} \right) \cr
& {M_x} \approx 5.1416\rho \cr
& \cr
& *{\text{The moment about the }}y{\text{ - axis is}} \cr
& {M_y} = \rho \int_a^b x \left[ {f\left( x \right) - g\left( x \right)} \right]dx \cr
& {M_y} = \rho \int_0^4 x \left[ {\frac{8}{{{x^2} + 4}}} \right]dx \cr
& {M_y} = \rho \int_0^4 {\frac{{8x}}{{{x^2} + 4}}} dx \cr
& {M_y} = \rho \left( 0 \right) \cr
& {M_y} = 0 \cr
& \cr
& *{\text{The center of mass }}\left( {\overline x ,\overline y } \right){\text{ is given by:}} \cr
& \overline x = \frac{{{M_y}}}{m} = \frac{0}{{2\pi \rho }} = 0 \cr
& \overline y = \frac{{{M_x}}}{m} = \frac{{5.1416\rho }}{{2\pi \rho }} = 0.818 \cr
& \left( {\overline x ,\overline y } \right) \approx \left( {0{\text{ }},{\text{ }}0.818} \right) \cr} $$