Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.6 Exercises - Page 494: 23

Answer

$$\left( {\overline x ,\overline y } \right) = \left( {\frac{8}{5},0} \right)$$

Work Step by Step

$$\eqalign{ & x = 4 - {y^2},{\text{ }}x = 0 \cr & {\text{Using the graph shown below}} \cr & {\text{Let }}h\left( y \right) = 4 - {y^2}{\text{ and }}g\left( y \right) = 0,{\text{ on the interval }}\left[ { - 2,2} \right] \cr & \cr & {\text{*The mass of the lamina is }} \cr & m = \rho \int_c^d {\left[ {h\left( y \right) - g\left( y \right)} \right]} dy \cr & m = \rho \int_{ - 2}^2 {\left( {4 - {y^2}} \right)} dy \cr & {\text{By symmetry}} \cr & m = 2\rho \int_0^2 {\left( {4 - {y^2}} \right)} dy \cr & m = 2\rho \left[ {4y - \frac{1}{3}{y^3}} \right]_0^2 \cr & m = 2\rho \left[ {4\left( 2 \right) - \frac{1}{3}{{\left( 2 \right)}^3}} \right] - 2\rho \left[ 0 \right] \cr & m = 2\rho \left( {\frac{{16}}{3}} \right) \cr & m = \frac{{32}}{3}\rho \cr & \cr & *{\text{The moment about the }}y{\text{ - axis is}} \cr & {M_y} = \rho \int_c^d {\left[ {\frac{{h\left( y \right) + g\left( y \right)}}{2}} \right]} \left[ {h\left( y \right) - g\left( y \right)} \right]dy \cr & {M_y} = \rho \int_{ - 2}^2 {\left[ {\frac{{4 - {y^2}}}{2}} \right]} \left[ {4 - {y^2}} \right]dy \cr & {M_y} = 2\rho \int_0^2 {\left[ {\frac{{4 - {y^2}}}{2}} \right]} \left[ {4 - {y^2}} \right]dy \cr & {M_y} = \rho \int_0^2 {{{\left( {4 - {y^2}} \right)}^2}} dy \cr & {M_y} = \rho \int_0^2 {\left( {16 - 8{y^2} + {y^4}} \right)} dy \cr & {M_y} = \rho \left[ {16y - \frac{8}{3}{y^3} + \frac{1}{5}{y^5}} \right]_0^2 \cr & {M_y} = \rho \left[ {16\left( 2 \right) - \frac{8}{3}{{\left( 2 \right)}^3} + \frac{1}{5}{{\left( 2 \right)}^5}} \right] - \rho \left[ 0 \right] \cr & {M_y} = \frac{{256}}{{15}}\rho \cr & \cr & *{\text{The moment about the }}x{\text{ - axis is}} \cr & {M_x} = \rho \int_c^d y \left[ {h\left( y \right) - g\left( y \right)} \right]dy \cr & {M_x} = \rho \int_{ - 2}^2 y \left[ {4 - {y^2}} \right]dy \cr & {M_x} = \rho \int_{ - 2}^2 {\left( {4y - {y^3}} \right)} dy \cr & {M_x} = \rho \left( 0 \right) \cr & {M_x} = 0 \cr & \cr & *{\text{The center of mass }}\left( {\overline x ,\overline y } \right){\text{ is given by:}} \cr & \overline x = \frac{{{M_y}}}{m} = \frac{{\frac{{256}}{{15}}\rho }}{{\frac{{32}}{3}\rho }} = \frac{8}{5} \cr & \overline y = \frac{{{M_x}}}{m} = \frac{0}{{\frac{{32}}{3}\rho }} = 0 \cr & \left( {\overline x ,\overline y } \right) = \left( {\frac{8}{5},0} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.