Answer
$= \frac{-1}{x} - \frac{1}{x^{2}}+\frac{2}{x^{3}} + c$
Work Step by Step
$\int (\frac{x^{2}+ 2x - 6}{x^{4}}) dx$
$\int (\frac{x^{2}}{x^{4}} + \frac{2x}{x^{4}} - \frac{6}{x^{4}}) dx$
$\int (\frac{1}{x^{2}} + \frac{2}{x^{3}} - \frac{6}{x^{4}}) dx$
$\int (x^{-2} + 2x^{-3} - 6x^{-4}) dx$
$= \frac{x^{-1}}{-1} + \frac{2x^{-2}}{-2} - \frac{6x^{-3}}{-3} + c$
$= -x^{-1} + (-x^{-2}) - (-2x^{-3})+ c$
$= \frac{-1}{x} - \frac{1}{x^{2}}+\frac{2}{x^{3}} + c$