Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - Review Exercises - Page 312: 13

Answer

$$y = {x^2} - 4x - 2$$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dx}} = 2x - 4 \cr & {\text{Separate the variables}} \cr & dy = \left( {2x - 4} \right)dx \cr & {\text{Integrate both sides}} \cr & \int {dy} = \int {\left( {2x - 4} \right)} dx \cr & y = {x^2} - 4x + C{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Use the initial condition }}\left( {4, - 2} \right) \cr & - 2 = {\left( 4 \right)^2} - 4\left( 4 \right) + C \cr & - 2 = 16 - 16 + C \cr & C = - 2 \cr & {\text{Substitute }}C{\text{ into }}\left( {\bf{1}} \right) \cr & y = {x^2} - 4x - 2 \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.