Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - Review Exercises - Page 312: 14

Answer

$$y = \frac{1}{6}{x^3} - {x^2} + 2$$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dx}} = \frac{1}{2}{x^2} - 2x \cr & {\text{Separate the variables}} \cr & dy = \left( {\frac{1}{2}{x^2} - 2x} \right)dx \cr & {\text{Integrate both sides}} \cr & \int {dy} = \int {\left( {\frac{1}{2}{x^2} - 2x} \right)} dx \cr & y = \frac{1}{6}{x^3} - {x^2} + C{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Use the initial condition }}\left( {6,2} \right) \cr & 2 = \frac{1}{6}{\left( 6 \right)^3} - {\left( 6 \right)^2} + C \cr & 6 = 36 - 36 + C \cr & C = 2 \cr & {\text{Substitute }}C{\text{ into }}\left( {\bf{1}} \right) \cr & y = \frac{1}{6}{x^3} - {x^2} + 2 \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.