Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.5 Exercises - Page 304: 96

Answer

$${\text{FALSE}}$$

Work Step by Step

$$\eqalign{ & \int {{{\sin }^2}2x\cos 2x} dx \cr & {\text{Let }}u = \sin 2x,{\text{ }}du = 2\cos 2xdx,{\text{ }}dx = \frac{1}{{2\cos 2x}}du \cr & {\text{Substituting}} \cr & \int {{{\sin }^2}2x\cos 2x} dx = \int {{u^2}\cos 2x\left( {\frac{1}{{2\cos 2x}}} \right)} du \cr & = \int {{u^2}\left( {\frac{1}{2}} \right)} du \cr & = \frac{1}{2}\int {{u^2}} du \cr & {\text{Integrating}} \cr & {\text{ = }}\frac{1}{2}\left( {\frac{{{u^3}}}{3}} \right) + C \cr & = \frac{1}{6}{u^3} + C \cr & {\text{Write in terms of }}x,{\text{ let }}u = \sin 2x \cr & = \frac{1}{6}{\sin ^3}2x + C \cr & {\text{Therefore, the statement is FALSE}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.