Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 240: 94

Answer

$$dy = - \frac{x}{{\sqrt {36 - {x^2}} }}dx$$

Work Step by Step

$$\eqalign{ & y = \sqrt {36 - {x^2}} \cr & y = {\left( {36 - {x^2}} \right)^{1/2}} \cr & {\text{Differentiate both sides with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {{{\left( {36 - {x^2}} \right)}^{1/2}}} \right] \cr & \frac{{dy}}{{dx}} = \frac{1}{2}{\left( {36 - {x^2}} \right)^{ - 1/2}}\frac{d}{{dx}}\left[ {36 - {x^2}} \right] \cr & \frac{{dy}}{{dx}} = \frac{1}{2}{\left( {36 - {x^2}} \right)^{ - 1/2}}\left( { - 2x} \right) \cr & \frac{{dy}}{{dx}} = {\left( {36 - {x^2}} \right)^{ - 1/2}}\left( { - x} \right) \cr & \frac{{dy}}{{dx}} = - \frac{x}{{\sqrt {36 - {x^2}} }} \cr & {\text{Write in differential form }}dy = f'\left( x \right)dx \cr & dy = - \frac{x}{{\sqrt {36 - {x^2}} }}dx \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.