Answer
$x \approx 1.146{\text{ and }}x \approx 7.854$
Work Step by Step
$$\eqalign{
& f\left( x \right) = 3\sqrt {x - 1} - x \cr
& {\text{Differentiating}} \cr
& f'\left( x \right) = 3\left( {\frac{1}{{2\sqrt {x - 1} }}} \right) - 1 \cr
& f'\left( x \right) = \frac{3}{{2\sqrt {x - 1} }} - 1 \cr
& {\text{Using the Newton's Method}} \cr
& {\text{The iterative formula is}} \cr
& {x_{n + 1}} = {x_n} - \frac{{f\left( {{x_n}} \right)}}{{f'\left( {{x_n}} \right)}}{\text{ }}\left( {\bf{1}} \right) \cr
& {\text{Substituting }}f\left( {{x_n}} \right){\text{ and }}f\left( {{x_n}} \right){\text{ into }}\left( {\bf{1}} \right) \cr
& {x_{n + 1}} = {x_n} - \frac{{3\sqrt {{x_n} - 1} - {x_n}}}{{\frac{3}{{2\sqrt {{x_n} - 1} }} - 1}} \cr
& {\text{From the graph we can see that the first possible initial }} \cr
& {\text{approximation is }}{x_1} \approx - 1.000,{\text{ the derivative is not defined}} \cr
& {\text{at }}x = - 1,{\text{ let }}{x_1} \approx 1.01 \cr
& {\text{The calculations for the iterations are shown below}} \cr
& {x_1} \approx - 1.010 \cr
& {x_2} \approx 1.061 \cr
& {\text{Continuing the iterations we obtain}} \cr
& {x_3} \approx 1.124 \cr
& {x_4} \approx 1.145 \cr
& {x_5} \approx 1.146 \cr
& {x_6} \approx 1.146 \cr
& {\text{The successive approximations }}{x_6}{\text{ and }}{x_5}{\text{ differ by}} \cr
& \left| {{x_6} - {x_5}} \right| < 0.001 \cr
& {\text{We can estimate the first zero of }}f\left( x \right){\text{ to be }} \cr
& x \approx 1.146 \cr
& {\text{Using a graphing utility we obtain}} \cr
& x \approx 1.145898034 \cr
& \cr
& {\text{From the graph we can see that the second possible initial }} \cr
& {\text{approximation is }}{x_1} \approx 8 \cr
& {\text{The calculations for the iterations are shown below}} \cr
& {x_1} \approx 8.000 \cr
& {x_2} \approx 7.855 \cr
& {\text{Continuing the iterations we obtain}} \cr
& {x_3} \approx 7.854 \cr
& {x_4} \approx 7.854 \cr
& {\text{The successive approximations }}{x_4}{\text{ and }}{x_3}{\text{ differ by}} \cr
& \left| {{x_4} - {x_3}} \right| < 0.001 \cr
& {\text{We can estimate the first zero of }}f\left( x \right){\text{ to be }} \cr
& x \approx 7.854 \cr
& {\text{Using a graphing utility we obtain}} \cr
& x \approx 7.854101966 \cr
& \cr
& {\text{The solutions are}} \cr
& x \approx 1.146{\text{ and }}x \approx 7.854 \cr} $$