Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 240: 92

Answer

$$dy = 0.6{\text{ and }}\Delta y = 0.661$$

Work Step by Step

$$\eqalign{ & {\text{Let the function }}f\left( x \right) = {x^3} - 6x,{\text{ }} \cr & x{\text{ - value: }}x = 2,{\text{ }} \cr & {\text{Differential of }}x:{\text{ }}\Delta x = dx = 0.1 \cr & \cr & {\text{Differentiating:}} \cr & f\left( x \right) = {x^3} - 6x \cr & f'\left( x \right) = 3{x^2} - 6 \cr & {\text{The differential is }} \cr & dy = f'\left( x \right)dx \cr & dy = \left( {3{x^2} - 6} \right)dx \cr & {\text{Substituting }}x = 2{\text{ and }}dx = 0.1 \cr & dy = \left( {3{{\left( 2 \right)}^2} - 6} \right)\left( {0.1} \right) \cr & dy = 0.6 \cr & \cr & {\text{Now}},{\text{ using }}\Delta x = 0.1,{\text{ the change in }}y{\text{ is}} \cr & \Delta y = f\left( {x + \Delta x} \right) - f\left( x \right) \cr & \Delta y = f\left( {2 + 0.1} \right) - f\left( 2 \right) \cr & \Delta y = f\left( {2.1} \right) - f\left( 2 \right) \cr & \Delta y = {\left( {2.1} \right)^3} - 6\left( {2.1} \right) - \left[ {{{\left( 2 \right)}^3} - 6\left( 2 \right)} \right] \cr & \Delta y = 0.661 \cr & \cr & dy = 0.6{\text{ and }}\Delta y = 0.661 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.