Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 240: 93

Answer

$$dy = \left( {1 - \cos x + x\sin x} \right)dx$$

Work Step by Step

$$\eqalign{ & y = x\left( {1 - \cos x} \right) \cr & {\text{Differentiate both sides with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {x\left( {1 - \cos x} \right)} \right] \cr & \frac{{dy}}{{dx}} = \left( {1 - \cos x} \right)\frac{d}{{dx}}\left[ x \right] + x\frac{d}{{dx}}\left[ {1 - \cos x} \right] \cr & \frac{{dy}}{{dx}} = \left( {1 - \cos x} \right) + x\left( {\sin x} \right) \cr & \frac{{dy}}{{dx}} = 1 - \cos x + x\sin x \cr & {\text{Write in differential form }}dy = f'\left( x \right)dx \cr & dy = \left( {1 - \cos x + x\sin x} \right)dx \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.