Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - Review Exercises - Page 240: 91

Answer

$$dy = 0.03{\text{ and }}\Delta y = 0.03005$$

Work Step by Step

$$\eqalign{ & {\text{Let the function }}f\left( x \right) = 0.5{x^2},{\text{ }} \cr & x{\text{ - value: }}x = 3,{\text{ }} \cr & {\text{Differential of }}x:{\text{ }}\Delta x = dx = 0.01 \cr & \cr & {\text{Differentiating:}} \cr & f\left( x \right) = 0.5{x^2} \cr & f'\left( x \right) = x \cr & {\text{The differential is }} \cr & dy = f'\left( x \right)dx \cr & dy = xdx \cr & {\text{Substituting }}x = 3{\text{ and }}dx = 0.01 \cr & dy = \left( 3 \right)\left( {0.01} \right) \cr & dy = 0.03 \cr & \cr & {\text{Now}},{\text{ using }}\Delta x = 0.01,{\text{ the change in }}y{\text{ is}} \cr & \Delta y = f\left( {x + \Delta x} \right) - f\left( x \right) \cr & \Delta y = f\left( {3 + 0.01} \right) - f\left( 3 \right) \cr & \Delta y = f\left( {3.01} \right) - f\left( 3 \right) \cr & \Delta y = 0.5{\left( {3.01} \right)^2} - 0.5{\left( 3 \right)^2} \cr & \Delta y = 0.03005 \cr & \cr & dy = 0.03{\text{ and }}\Delta y = 0.03005 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.