Answer
\[\boxed{\begin{array}{*{20}{c}}
x&{1.9}&{1.99}&2&{2.01}&{2.1} \\
{f\left( x \right)}&{0.9463}&{0.9134}&{0.9093}&{0.9051}&{0.8632} \\
{T\left( x \right)}&{0.9509}&{0.9135}&{0.9093}&{0.9051}&{0.8677}
\end{array}}\]
Work Step by Step
$$\eqalign{
& f\left( x \right) = \sin x,{\text{ }}\left( {2,\sin 2} \right) \cr
& {\text{Differentiate}} \cr
& f'\left( x \right) = \cos x \cr
& f'\left( 2 \right) = \cos \left( 2 \right) \cr
& {\text{The equation for the tangent line at the point }}\left( {c,f\left( c \right)} \right){\text{ is:}} \cr
& y = f\left( c \right) + f'\left( c \right)\left( {x - c} \right) \cr
& {\text{We have the point }}\left( {2,\sqrt 2 } \right) \cr
& \to c = 2,{\text{ }}f\left( c \right) = \sin 2,{\text{ }}f'\left( c \right) = \cos \left( 2 \right) \cr
& y = \sin \left( 2 \right) + \cos \left( 2 \right)\left( {x - 2} \right) \cr
& T\left( x \right) = \cos \left( 2 \right)\left( {x - 2} \right) + \sin \left( 2 \right) \cr
& {\text{Completing the table for }}f\left( x \right){\text{:}} \cr
& x = 1.9 \to f\left( {1.9} \right) = \sin \left( {1.9} \right) = 0.9463 \cr
& x = 1.99 \to f\left( {1.99} \right) = \sin \left( {1.99} \right) = 0.9134 \cr
& x = 2 \to f\left( 2 \right) = \sin \left( 2 \right) = 0.9093 \cr
& x = 2.01 \to f\left( {2.01} \right) = \sin \left( {2.01} \right) = 0.9051 \cr
& x = 2.1 \to f\left( {2.1} \right) = \sin \left( {2.1} \right) = 0.8632 \cr
& {\text{Completing the table for }}T\left( x \right){\text{:}} \cr
& x = 1.9 \to T\left( {1.9} \right) = \cos \left( 2 \right)\left( {1.9 - 2} \right) + \sin \left( 2 \right) = 0.9509 \cr
& x = 1.99 \to T\left( {1.99} \right) = \cos \left( 2 \right)\left( {1.99 - 2} \right) + \sin \left( 2 \right) = 0.9135 \cr
& x = 2 \to T\left( 2 \right) = \cos \left( 2 \right)\left( {2 - 2} \right) + \sin \left( 2 \right) = 0.9093 \cr
& x = 2.01 \to T\left( {2.01} \right) = \cos \left( 2 \right)\left( {2.01 - 2} \right) + \sin \left( 2 \right) = 0.9051 \cr
& x = 2.1 \to T\left( {2.1} \right) = \cos \left( 2 \right)\left( {2.1 - 2} \right) + \sin \left( 2 \right) = 0.8677 \cr
& \cr
& {\text{Therefore}} \cr} $$
\[\boxed{\begin{array}{*{20}{c}}
x&{1.9}&{1.99}&2&{2.01}&{2.1} \\
{f\left( x \right)}&{0.9463}&{0.9134}&{0.9093}&{0.9051}&{0.8632} \\
{T\left( x \right)}&{0.9509}&{0.9135}&{0.9093}&{0.9051}&{0.8677}
\end{array}}\]