Answer
\[\boxed{\begin{array}{*{20}{c}}
x&{1.9}&{1.99}&2&{2.01}&{2.1} \\
{f\left( x \right)}&{3.61}&{3.9601}&4&{4.0401}&{4.41} \\
{T\left( x \right)}&{3.6}&{3.96}&4&{4.04}&{4.4}
\end{array}}\]
Work Step by Step
$$\eqalign{
& f\left( x \right) = {x^2},{\text{ }}\left( {2,4} \right) \cr
& {\text{Differentiate}} \cr
& f'\left( x \right) = 2x \cr
& f'\left( 2 \right) = 2\left( 2 \right) = 4 \cr
& {\text{The equation for the tangent line at the point }}\left( {c,f\left( c \right)} \right){\text{ is:}} \cr
& y = f\left( c \right) + f'\left( c \right)\left( {x - c} \right) \cr
& {\text{We have the point }}\left( {2,4} \right) \to c = 2,{\text{ }}f\left( c \right) = 4,{\text{ and }}f'\left( c \right) = 4 \cr
& y = 4 + 4\left( {x - 2} \right) \cr
& y = 4 + 4x - 8 \cr
& y = 4x - 4 \cr
& T\left( x \right) = 4x - 4 \cr
& {\text{Completing the table for }}f\left( x \right){\text{:}} \cr
& x = 1.9 \to f\left( {1.9} \right) = {\left( {1.9} \right)^2} = 3.61 \cr
& x = 1.99 \to f\left( {1.99} \right) = {\left( {1.99} \right)^2} = 3.9601 \cr
& x = 2 \to f\left( 2 \right) = {\left( 2 \right)^2} = 4 \cr
& x = 2.01 \to f\left( {2.01} \right) = {\left( {2.01} \right)^2} = 4.0401 \cr
& x = 2.1 \to f\left( {2.1} \right) = {\left( {2.1} \right)^2} = 4.41 \cr
& {\text{Completing the table for }}T\left( x \right){\text{:}} \cr
& x = 1.9 \to T\left( {1.9} \right) = 4\left( {1.9} \right) - 4 = 3.6 \cr
& x = 1.99 \to T\left( {1.99} \right) = 4\left( {1.99} \right) - 4 = 3.96 \cr
& x = 2 \to T\left( 2 \right) = 4\left( 2 \right) - 4 = 4 \cr
& x = 2.01 \to T\left( {2.01} \right) = 4\left( {2.01} \right) - 4 = 4.04 \cr
& x = 2.1 \to T\left( {2.1} \right) = 4\left( {2.01} \right) - 4 = 4.4 \cr
& \cr
& {\text{Therefore}} \cr} $$
\[\boxed{\begin{array}{*{20}{c}}
x&{1.9}&{1.99}&2&{2.01}&{2.1} \\
{f\left( x \right)}&{3.61}&{3.9601}&4&{4.0401}&{4.41} \\
{T\left( x \right)}&{3.6}&{3.96}&4&{4.04}&{4.4}
\end{array}}\]