Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.9 Exercises - Page 236: 16

Answer

$$dy = \frac{1}{{2\sqrt x }}\left( {1 - \frac{1}{x}} \right)dx$$

Work Step by Step

$$\eqalign{ & y = \sqrt x + \frac{1}{{\sqrt x }} \cr & y = {x^{1/2}} + {x^{ - 1/2}} \cr & {\text{Differentiate both sides with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {{x^{1/2}} + {x^{ - 1/2}}} \right] \cr & \frac{{dy}}{{dx}} = \frac{1}{2}{x^{ - 1/2}} - \frac{1}{2}{x^{ - 3/2}} \cr & \frac{{dy}}{{dx}} = \frac{1}{{2\sqrt x }} - \frac{1}{{2{x^{3/2}}}} \cr & \frac{{dy}}{{dx}} = \frac{1}{{2\sqrt x }} - \frac{1}{{2x\sqrt x }} \cr & {\text{Factor}} \cr & \frac{{dy}}{{dx}} = \frac{1}{{2\sqrt x }}\left( {1 - \frac{1}{x}} \right) \cr & {\text{Write in differential form }}dy = f'\left( x \right)dx \cr & dy = \frac{1}{{2\sqrt x }}\left( {1 - \frac{1}{x}} \right)dx \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.