Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.5 Exercises - Page 203: 70

Answer

Graph

Work Step by Step

$$\eqalign{ & y = 1 - \frac{1}{x} \cr & {\text{Find the }}y{\text{ intercept, let }}x = 0 \cr & y = 2 - \frac{3}{{{{\left( 0 \right)}^2}}} \cr & {\text{No }}y{\text{ - intercept}}{\text{.}} \cr & {\text{Find the }}x{\text{ intercept, let }}y = 0 \cr & 0 = 1 - \frac{1}{x} \to x = 1 \cr & x{\text{ - intercept }}\left( {1,0} \right) \cr & \cr & *{\text{Find the extrema}} \cr & {\text{Differentiate}} \cr & y' = \frac{d}{{dx}}\left[ {1 - \frac{1}{x}} \right] \cr & y' = \frac{1}{{{x^2}}} \cr & {\text{Let }}y' = 0 \cr & \frac{1}{{{x^2}}} = 0,{\text{ there are no values at which }}y' = 0. \cr & {\text{No relative extrema}}{\text{.}} \cr & \cr & {\text{*Calculate the asymptotes}} \cr & \frac{1}{x} \cr & x = 0 \cr & {\text{Vertical asymptote at }}x = 0 \cr & \mathop {\lim }\limits_{x \to \infty } 1 - \frac{1}{x} = 1 \cr & \mathop {\lim }\limits_{x \to - \infty } 1 - \frac{1}{x} = 1 \cr & {\text{Horizontal asymptote }}y = 1 \cr & \cr & {\text{*Symmetry}} \cr & f\left( { - x} \right) = 1 - \frac{1}{{ - x}} \cr & f\left( { - x} \right) = 1 + \frac{1}{x} \cr & {\text{Neither odd nor even, so there is no symmetry}}{\text{.}} \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.