Answer
Graph
Work Step by Step
$$\eqalign{
& y = 1 - \frac{1}{x} \cr
& {\text{Find the }}y{\text{ intercept, let }}x = 0 \cr
& y = 2 - \frac{3}{{{{\left( 0 \right)}^2}}} \cr
& {\text{No }}y{\text{ - intercept}}{\text{.}} \cr
& {\text{Find the }}x{\text{ intercept, let }}y = 0 \cr
& 0 = 1 - \frac{1}{x} \to x = 1 \cr
& x{\text{ - intercept }}\left( {1,0} \right) \cr
& \cr
& *{\text{Find the extrema}} \cr
& {\text{Differentiate}} \cr
& y' = \frac{d}{{dx}}\left[ {1 - \frac{1}{x}} \right] \cr
& y' = \frac{1}{{{x^2}}} \cr
& {\text{Let }}y' = 0 \cr
& \frac{1}{{{x^2}}} = 0,{\text{ there are no values at which }}y' = 0. \cr
& {\text{No relative extrema}}{\text{.}} \cr
& \cr
& {\text{*Calculate the asymptotes}} \cr
& \frac{1}{x} \cr
& x = 0 \cr
& {\text{Vertical asymptote at }}x = 0 \cr
& \mathop {\lim }\limits_{x \to \infty } 1 - \frac{1}{x} = 1 \cr
& \mathop {\lim }\limits_{x \to - \infty } 1 - \frac{1}{x} = 1 \cr
& {\text{Horizontal asymptote }}y = 1 \cr
& \cr
& {\text{*Symmetry}} \cr
& f\left( { - x} \right) = 1 - \frac{1}{{ - x}} \cr
& f\left( { - x} \right) = 1 + \frac{1}{x} \cr
& {\text{Neither odd nor even, so there is no symmetry}}{\text{.}} \cr
& \cr
& {\text{Graph}} \cr} $$